Qie, L. et al. Author Correction: Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 9, 342 (2018).
Google Scholar
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
Google Scholar
Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).
Google Scholar
Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).
Google Scholar
Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).
Google Scholar
Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).
Google Scholar
Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the years 2010, 2017 and 2018, v2. Centre for Environmental Data Analysis. https://doi.org/10.5285/84403d09cef3485883158f4df2989b0c (2021).
COP26, UN Climate Change Conference UK 2021. Glasgow Leaders’ Declaration on Forests and Land Use. https://ukcop26.org/glasgow-leaders-declaration-on-forests-and-land-use/ (2021).
Seddon, N. Harnessing the potential of nature-based solutions for mitigating and adapting to climate change. Science 376, 1410–1416 (2022).
Google Scholar
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
Google Scholar
Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).
Google Scholar
United Nations Framework Convention on Climate Change (UNFCCC). Global Stocktake. https://unfccc.int/topics/global-stocktake (2015).
Requena Suarez, D. et al. Estimating aboveground net biomass change for tropical and subtropical forests: refinement of IPCC default rates using forest plot data. Glob. Change Biol. 25, 3609–3624 (2019).
Google Scholar
Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).
Google Scholar
Heinrich, V. H. A. et al. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Commun. 12, 1785 (2021).
Google Scholar
Philipson, C. D. et al. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science 369, 838–841 (2020).
Google Scholar
Rappaport, D. I. et al. Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation. Environ. Res. Lett. 13, 065013 (2018).
Google Scholar
Hayward, R. M. et al. Three decades of post-logging tree community recovery in naturally regenerating and actively restored dipterocarp forest in Borneo. For. Ecol. Manag. 488, 119036 (2021).
Google Scholar
Putz, F. E. et al. Intact forest in selective logging landscapes in the tropics. Front. For. Glob. Change 2, 30 (2019).
Google Scholar
Silva, C. V. J. et al. Estimating the multi-decadal carbon deficit of burned Amazonian forests. Environ. Res. Lett. 15, 114023 (2020).
Google Scholar
Poorter, L. et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 3, 928–934 (2019).
Google Scholar
Dubayah, R. et al. The Global Ecosystem Dynamics Investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020).
Google Scholar
Sullivan, M. J. P. et al. Long-term thermal sensitivity of earth’s tropical forests. Science 368, 869–874 (2020).
Google Scholar
Poorter, L. et al. Multidimensional tropical forest recovery. Science 374, 1370–1376 (2021).
Google Scholar
Rozendaal, D. et al. Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests. Environ. Res. Lett. 17, 014047 (2022).
Google Scholar
Griscom, B., Ellis, P. & Putz, F. E. Carbon emissions performance of commercial logging in East Kalimantan, Indonesia. Glob. Change Biol. 20, 923–937 (2014).
Google Scholar
Putz, F. E. et al. Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. Conserv. Lett. 5, 296–303 (2012).
Google Scholar
Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).
Google Scholar
Lloyd, J. & Farquhar, G. D. Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philos. Trans. R. Soc. B Biol. Sci. 363, 1811–1817 (2008).
Google Scholar
Bennett, A. C. et al. Resistance of African tropical forests to an extreme climate anomaly. Proc. Natl Acad. Sci. 118, e2003169118 (2021).
Google Scholar
Ross, C. W. et al. Woody-biomass projections and drivers of change in sub-Saharan Africa. Nat. Clim. Change 11, 449–455 (2021).
Google Scholar
Esquivel-Muelbert, A. et al. A spatial and temporal risk assessment of the impacts of El Niño on the tropical forest carbon cycle: theoretical framework, scenarios, and implications. Atmosphere 10, 588 (2019).
Google Scholar
Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 508, 86–90 (2014).
Google Scholar
Saatchi, S. et al. Detecting vulnerability of humid tropical forests to multiple stressors. One Earth 4, 988–1003 (2021).
Google Scholar
Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).
Google Scholar
Ferraz, A. et al. Carbon storage potential in degraded forests of Kalimantan, Indonesia. Environ. Res. Lett. 13, 095001 (2018).
Google Scholar
Jucker, T. et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 21, 989–1000 (2018).
Google Scholar
Blackham, G. V., Webb, E. L. & Corlett, R. T. Natural regeneration in a degraded tropical peatland, Central Kalimantan, Indonesia: implications for forest restoration. For. Ecol. Manag. 324, 8–15 (2014).
Google Scholar
Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. D. & Mezbahuddin, S. Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan. Commun. Earth Environ. 1, 65 (2020).
Google Scholar
Riutta, T. et al. Major and persistent shifts in below-ground carbon dynamics and soil respiration following logging in tropical forests. Glob. Change Biol. 27, 2225–2240 (2021).
Google Scholar
Noon, M. L. et al. Mapping the irrecoverable carbon in Earth’s ecosystems. Nat. Sustain. 5, 37–46 (2022).
Google Scholar
Rosan, T. M. et al. Fragmentation-driven divergent trends in burned area in Amazonia and Cerrado. Front. For. Glob. Change 5, 801408 (2022).
Google Scholar
Poulsen, J. R. et al. Old growth Afrotropical forests critical for maintaining forest carbon. Glob. Ecol. Biogeogr. 29, 1785–1798 (2020).
Google Scholar
Haenssgen, M. J. et al. Implementation of the COP26 declaration to halt forest loss must safeguard and include Indigenous people. Nat. Ecol. Evol. 6, 235–236 (2022).
Google Scholar
Maxwell, S. L. et al. Degradation and forgone removals increase the carbon impact of intact forest loss by 626%. Sci. Adv. 5, eaax2546 (2019).
Google Scholar
Reynolds, G., Payne, J., Sinun, W., Mosigil, G. & Walsh, R. P. D. Changes in forest land use and management in Sabah, Malaysian Borneo, 1990–2010, with a focus on the Danum Valley region. Philos. Trans. R. Soc. B Biol. Sci. 366, 3168–3176 (2011).
Google Scholar
Boul Lefeuvre, N. et al. The value of logged tropical forests: a study of ecosystem services in Sabah, Borneo. Environ. Sci. Policy 128, 56–67 (2022).
Google Scholar
Lennox, G. D. et al. Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Glob. Change Biol. 24, 5680–5694 (2018).
Google Scholar
Vieira, I. C. G., Gardner, T., Ferreira, J., Lees, A. C. & Barlow, J. Challenges of governing second-growth forests: a case study from the Brazilian Amazonian state of Pará. Forests 5, 1737–1752 (2014).
Google Scholar
Roe, S. et al. Land-based measures to mitigate climate change: potential and feasibility by country. Glob. Change Biol. 27, 6025–6058 (2021).
Google Scholar
Martin, A. R., Doraisami, M. & Thomas, S. C. Global patterns in wood carbon concentration across the world’s trees and forests. Nat. Geosci. 11, 915–920 (2018).
Google Scholar
ESRI. ArcGIS Pro Desktop (2.6.0) (2020).
Descals, A. et al. High-resolution global map of smallholder and industrial closed-canopy oil palm plantations. Earth Syst. Sci. Data 13, 1211–1231 (2021).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2008).
Richards, F. J. A flexible growth function for empirical use. J. Exp. Bot. 10, 290–301 (1959).
Google Scholar
Smith, C. C. et al. Secondary forests offset less than 10% of deforestation-mediated carbon emissions in the Brazilian Amazon. Glob. Change Biol. 26, 7006–7020 (2020).
Google Scholar
Nunes, S., Oliveira, L.Jr, Siqueira, J., Morton, D. C. & Souza, C. M. Unmasking secondary vegetation dynamics in the Brazilian Amazon. Environ. Res. Lett. 15, 034057 (2020).
Google Scholar
Silva Junior, C. H. L. et al. Benchmark maps of 33 years of secondary forest age for Brazil. Sci. Data 7, 269 (2020).
Google Scholar
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).
Google Scholar
Silva Junior, C. H. L, & Campanharo, W. A. Maximum Cumulative Water Deficit – MCWD: a R language script (v1.1.0). https://doi.org/10.5281/zenodo.2652629 (2019).
Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).
Google Scholar
Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).
Google Scholar
Nobre, A. D. et al. Height Above the Nearest Drainage – a hydrologically relevant new terrain model. J. Hydrol. 404, 13–29 (2011).
Google Scholar
Almeida, C. A. et al. High spatial resolution land use and land cover mapping of the Brazilian legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amazon 46, 291–302 (2016).
Google Scholar
Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).
Google Scholar
Haining, R. P. in International Encyclopedia of the Social & Behavioral Sciences (eds. Smelser, N. J. & Baltes, P. B.) 14822–14827 (Pergamon, 2001).
Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).
Google Scholar
Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Research Data Leeds Repository https://archive.researchdata.leeds.ac.uk/251/ (2017).
Donchyts, G., Winsemius, H., Schellekens, J., Erickson, T. & Gao, H. Global 30m height above the nearest drainage. Geophys. Res. Abstr. 18, EGU2016-17445-3 (2016).
Souza, C. M.Jr et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and Earth Engine. Remote Sens. 12, 2735 (2020).
Google Scholar
Global Forest Watch. Managed Forest Concessions. https://www.globalforestwatch.org/ (2020).
ThematicMapping. http://thematicmapping.org/downloads/world_borders.php (2009).
Heinrich, V. H. A. et al. Data and code from paper: The carbon sink of secondary and degraded humid tropical forests. https://zenodo.org/record/7515854#.Y8kVQEFxeUk (2022).