Strange IndiaStrange India


  • Manolio, T. A., Bailey-Wilson, J. E. & Collins, F. S. Genes, environment and the value of prospective cohort studies. Nat. Rev. Genet. 7, 812–820 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qiu, X. et al. The Born in Guangzhou Cohort Study (BIGCS). Eur. J. Epidemiol. 32, 337–346 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Denny, J. C. et al. The ‘all of us’ research program. N. Engl. J. Med. 381, 668–676 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Barker, D. J. P. The fetal and infant origins of adult disease. Br. Med. J. 301, 1111 (1990).

    Article 
    CAS 

    Google Scholar 

  • Gaillard, R. & Jaddoe, V. W. V. Maternal cardiovascular disorders before and during pregnancy and offspring cardiovascular risk across the life course. Nat. Rev. Cardiol. 20, 617–630 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fraser, A. et al. Cohort profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int. J. Epidemiol. 42, 97–110 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Magnus, P. et al. Cohort profile update: the Norwegian Mother and Child Cohort Study (MoBa). Int. J. Epidemiol. 45, 382–388 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Ernst, A. et al. Cohort profile: the puberty cohort in the Danish National Birth Cohort (DNBC). Int. J. Epidemiol. 49, 373–374 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Kooijman, M. N. et al. The Generation R Study: design and cohort update 2017. Eur. J. Epidemiol. 31, 1243–1264 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Middeldorp, C. M., Felix, J. F., Mahajan, A. & McCarthy, M. I. The Early Growth Genetics (Egg) and Early Genetics And Lifecourse Epidemiology (eagle) consortia: design, results and future prospects. Eur. J. Epidemiol. 34, 279–300 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Metzger, B. E. et al. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 358, 1991–2002 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Kishi, R. et al. Birth Cohort Consortium of Asia: current and future perspectives. Epidemiology 28, S19–S34 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Tao, F. B. et al. Cohort profile: the China–Anhui Birth Cohort Study. Int. J. Epidemiol. 42, 709–721 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Hu, Z. B. et al. Profile of China National Birth Cohort. Chinese J. Epidemiol. 42, 569–574 (2021).

    CAS 

    Google Scholar 

  • Yue, W. et al. The China Birth Cohort Study (CBCS). Eur. J. Epidemiol. 37, 295–304 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y., Sidore, C., Kang, H. M., Boehnke, M. & Abecasis, G. R. Low-coverage sequencing: Implications for design of complex trait association studies. Genome Res. 21, 940–951 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. et al. Genomic analyses from non-invasive prenatal testing reveal genetic associations, patterns of viral infections, and Chinese population history. Cell 175, 347–359.e14 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, Y. et al. The ChinaMAP analytics of deep whole genome sequences in 10,588 individuals. Cell Res. 30, 717–731 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wall, J. D. et al. The GenomeAsia 100 K Project enables genetic discoveries across Asia. Nature 576, 106–111 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, P. et al. NyuWa Genome resource: a deep whole-genome sequencing-based variation profile and reference panel for the Chinese population. Cell Rep. 37, 110017 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cong, P. K. et al. Genomic analyses of 10,376 individuals in the Westlake BioBank for Chinese (WBBC) pilot project. Nat. Commun. 13, 2939–15 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mallick, S. et al. The Allen Ancient DNA Resource (AADR): A curated compendium of ancient human genomes. Preprint at bioRxiv https://doi.org/10.1101/2023.04.06.535797 (2023).

  • Mao, X. et al. The deep population hiswwwtory of northern East Asia from the Late Pleistocene to the Holocene. Cell 184, 3256–3266.e13 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, M. A. et al. Ancient DNA indicates human population shifts and admixture in northern and southern China. Science 369, 282–288 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ning, C. et al. Ancient genomes from northern China suggest links between subsistence changes and human migration. Nat. Commun. 11, 2700 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, T. et al. Human population history at the crossroads of East and Southeast Asia since 11,000 years ago. Cell 184, 3829–3841.e21 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kamat, M. A. et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics 35, 4851–4853 (2019).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hayes, M. G. et al. Identification of HKDC1 and BACE2 as genes influencing glycemic traits during pregnancy through genome-wide association studies. Diabetes 62, 3282–3291 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng, L. et al. The p.Ser267Phe variant in SLC10A1 is associated with resistance to chronic hepatitis B. Hepatology 61, 1251–1260 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ovadia, C. et al. Association of adverse perinatal outcomes of intrahepatic cholestasis of pregnancy with biochemical markers: results of aggregate and individual patient data meta-analyses. Lancet 393, 899–909 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Warrington, N. M. et al. Maternal and fetal genetic contribution to gestational weight gain. Int. J. Obes. 42, 775–784 (2018).

    Article 
    CAS 

    Google Scholar 

  • Safran, M. et al. GeneCards version 3: the human gene integrator. Database 2010, baq020 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, J. R. et al. The Year of the Rat: the Rat Genome Database at 20: a multi-species knowledgebase and analysis platform. Nucleic Acids Res. 48, D731–D742 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Marissal-Arvy, N. et al. QTLs influencing carbohydrate and fat choice in a LOU/CxFischer 344 F2 rat population. Obesity 22, 565–575 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Juliusdottir, T. et al. Distinction between the effects of parental and fetal genomes on fetal growth. Nat. Genet. 53, 1135–1142 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Han, Z., Lutsiv, O., Mulla, S. & McDonald, S. D. Maternal height and the risk of preterm birth and low birth weight: a systematic review and meta-analyses. J. Obstet. Gynaecol. Canada 34, 721–746 (2012).

    Article 

    Google Scholar 

  • Voigt, M. et al. Individualized birth length and head circumference percentile charts based on maternal body weight and height. J. Perinat. Med. 48, 656–664 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Teng, H. et al. Gestational systolic blood pressure trajectories and risk of adverse maternal and perinatal outcomes in Chinese women. BMC Pregnancy Childbirth 21, 155 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, J. et al. Dissecting maternal and fetal genetic effects underlying the associations between maternal phenotypes, birth outcomes, and adult phenotypes: a Mendelian-randomization and haplotype-based genetic score analysis in 10,734 mother–infant pairs. PLoS Med. 17, e1003305 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baker, H. D. R. Language atlas of China. Bull. Sch. Orient. Afr. Stud. 56, 398–399 (1993).

  • Chen, Y. et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7, gix120 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, F. et al. Ancestry-agnostic estimation of DNA sample contamination from sequence reads. Genome Res. 30, 185–194 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Browning, B. L. & Yu, Z. Simultaneous genotype calling and haplotype phasing improves genotype accuracy and reduces false-positive associations for genome-wide association studies. Am. J. Hum. Genet. 85, 847–861 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McLaren, W. et al. The Ensembl variant effect predictor. Genome Biol. 17, 122 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, K. et al. Meta-imputation: an efficient method to combine genotype data after imputation with multiple reference panels. Am. J. Hum. Genet. 109, 1007–1015 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, https://doi.org/10.1186/s13742-015-0047-8 (2015).

  • Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wangkumhang, P., Greenfield, M. & Hellenthal, G. An efficient method to identify, date, and describe admixture events using haplotype information. Genome Res. 32, 1553–1564 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hellenthal, G. et al. A genetic atlas of human admixture history. Science 343, 747–751 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, W. et al. Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts. Nat. Genet. 52, 634–639 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lonsdale, J. et al. The Genotype–Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article 
    CAS 

    Google Scholar 

  • Zhao, H. et al. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics 30, 1006–1007 (2014).

    Article 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *