Manolio, T. A., Bailey-Wilson, J. E. & Collins, F. S. Genes, environment and the value of prospective cohort studies. Nat. Rev. Genet. 7, 812–820 (2006).
Google Scholar
Qiu, X. et al. The Born in Guangzhou Cohort Study (BIGCS). Eur. J. Epidemiol. 32, 337–346 (2017).
Google Scholar
Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020).
Google Scholar
Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
Google Scholar
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
Google Scholar
Denny, J. C. et al. The ‘all of us’ research program. N. Engl. J. Med. 381, 668–676 (2019).
Google Scholar
Barker, D. J. P. The fetal and infant origins of adult disease. Br. Med. J. 301, 1111 (1990).
Google Scholar
Gaillard, R. & Jaddoe, V. W. V. Maternal cardiovascular disorders before and during pregnancy and offspring cardiovascular risk across the life course. Nat. Rev. Cardiol. 20, 617–630 (2023).
Google Scholar
Sirugo, G., Williams, S. M. & Tishkoff, S. A. The missing diversity in human genetic studies. Cell 177, 26–31 (2019).
Google Scholar
Fraser, A. et al. Cohort profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int. J. Epidemiol. 42, 97–110 (2013).
Google Scholar
Magnus, P. et al. Cohort profile update: the Norwegian Mother and Child Cohort Study (MoBa). Int. J. Epidemiol. 45, 382–388 (2016).
Google Scholar
Ernst, A. et al. Cohort profile: the puberty cohort in the Danish National Birth Cohort (DNBC). Int. J. Epidemiol. 49, 373–374 (2020).
Google Scholar
Kooijman, M. N. et al. The Generation R Study: design and cohort update 2017. Eur. J. Epidemiol. 31, 1243–1264 (2016).
Google Scholar
Middeldorp, C. M., Felix, J. F., Mahajan, A. & McCarthy, M. I. The Early Growth Genetics (Egg) and Early Genetics And Lifecourse Epidemiology (eagle) consortia: design, results and future prospects. Eur. J. Epidemiol. 34, 279–300 (2019).
Google Scholar
Metzger, B. E. et al. Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 358, 1991–2002 (2008).
Google Scholar
Kishi, R. et al. Birth Cohort Consortium of Asia: current and future perspectives. Epidemiology 28, S19–S34 (2017).
Google Scholar
Tao, F. B. et al. Cohort profile: the China–Anhui Birth Cohort Study. Int. J. Epidemiol. 42, 709–721 (2013).
Google Scholar
Hu, Z. B. et al. Profile of China National Birth Cohort. Chinese J. Epidemiol. 42, 569–574 (2021).
Google Scholar
Yue, W. et al. The China Birth Cohort Study (CBCS). Eur. J. Epidemiol. 37, 295–304 (2022).
Google Scholar
Li, Y., Sidore, C., Kang, H. M., Boehnke, M. & Abecasis, G. R. Low-coverage sequencing: Implications for design of complex trait association studies. Genome Res. 21, 940–951 (2011).
Google Scholar
DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).
Google Scholar
Liu, S. et al. Genomic analyses from non-invasive prenatal testing reveal genetic associations, patterns of viral infections, and Chinese population history. Cell 175, 347–359.e14 (2018).
Google Scholar
Cao, Y. et al. The ChinaMAP analytics of deep whole genome sequences in 10,588 individuals. Cell Res. 30, 717–731 (2020).
Google Scholar
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
Google Scholar
McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).
Google Scholar
Wall, J. D. et al. The GenomeAsia 100 K Project enables genetic discoveries across Asia. Nature 576, 106–111 (2019).
Google Scholar
Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).
Google Scholar
Zhang, P. et al. NyuWa Genome resource: a deep whole-genome sequencing-based variation profile and reference panel for the Chinese population. Cell Rep. 37, 110017 (2021).
Google Scholar
Cong, P. K. et al. Genomic analyses of 10,376 individuals in the Westlake BioBank for Chinese (WBBC) pilot project. Nat. Commun. 13, 2939–15 (2022).
Google Scholar
Mallick, S. et al. The Allen Ancient DNA Resource (AADR): A curated compendium of ancient human genomes. Preprint at bioRxiv https://doi.org/10.1101/2023.04.06.535797 (2023).
Mao, X. et al. The deep population hiswwwtory of northern East Asia from the Late Pleistocene to the Holocene. Cell 184, 3256–3266.e13 (2021).
Google Scholar
Yang, M. A. et al. Ancient DNA indicates human population shifts and admixture in northern and southern China. Science 369, 282–288 (2020).
Google Scholar
Ning, C. et al. Ancient genomes from northern China suggest links between subsistence changes and human migration. Nat. Commun. 11, 2700 (2020).
Google Scholar
Wang, T. et al. Human population history at the crossroads of East and Southeast Asia since 11,000 years ago. Cell 184, 3829–3841.e21 (2021).
Google Scholar
Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).
Google Scholar
Kamat, M. A. et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics 35, 4851–4853 (2019).
Google Scholar
Hayes, M. G. et al. Identification of HKDC1 and BACE2 as genes influencing glycemic traits during pregnancy through genome-wide association studies. Diabetes 62, 3282–3291 (2013).
Google Scholar
Peng, L. et al. The p.Ser267Phe variant in SLC10A1 is associated with resistance to chronic hepatitis B. Hepatology 61, 1251–1260 (2015).
Google Scholar
Ovadia, C. et al. Association of adverse perinatal outcomes of intrahepatic cholestasis of pregnancy with biochemical markers: results of aggregate and individual patient data meta-analyses. Lancet 393, 899–909 (2019).
Google Scholar
Warrington, N. M. et al. Maternal and fetal genetic contribution to gestational weight gain. Int. J. Obes. 42, 775–784 (2018).
Google Scholar
Safran, M. et al. GeneCards version 3: the human gene integrator. Database 2010, baq020 (2010).
Google Scholar
Smith, J. R. et al. The Year of the Rat: the Rat Genome Database at 20: a multi-species knowledgebase and analysis platform. Nucleic Acids Res. 48, D731–D742 (2020).
Google Scholar
Marissal-Arvy, N. et al. QTLs influencing carbohydrate and fat choice in a LOU/CxFischer 344 F2 rat population. Obesity 22, 565–575 (2014).
Google Scholar
Juliusdottir, T. et al. Distinction between the effects of parental and fetal genomes on fetal growth. Nat. Genet. 53, 1135–1142 (2021).
Google Scholar
Han, Z., Lutsiv, O., Mulla, S. & McDonald, S. D. Maternal height and the risk of preterm birth and low birth weight: a systematic review and meta-analyses. J. Obstet. Gynaecol. Canada 34, 721–746 (2012).
Google Scholar
Voigt, M. et al. Individualized birth length and head circumference percentile charts based on maternal body weight and height. J. Perinat. Med. 48, 656–664 (2020).
Google Scholar
Teng, H. et al. Gestational systolic blood pressure trajectories and risk of adverse maternal and perinatal outcomes in Chinese women. BMC Pregnancy Childbirth 21, 155 (2021).
Google Scholar
Chen, J. et al. Dissecting maternal and fetal genetic effects underlying the associations between maternal phenotypes, birth outcomes, and adult phenotypes: a Mendelian-randomization and haplotype-based genetic score analysis in 10,734 mother–infant pairs. PLoS Med. 17, e1003305 (2020).
Google Scholar
Baker, H. D. R. Language atlas of China. Bull. Sch. Orient. Afr. Stud. 56, 398–399 (1993).
Chen, Y. et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7, gix120 (2018).
Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Google Scholar
Zhang, F. et al. Ancestry-agnostic estimation of DNA sample contamination from sequence reads. Genome Res. 30, 185–194 (2020).
Google Scholar
Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).
Google Scholar
Browning, B. L. & Yu, Z. Simultaneous genotype calling and haplotype phasing improves genotype accuracy and reduces false-positive associations for genome-wide association studies. Am. J. Hum. Genet. 85, 847–861 (2009).
Google Scholar
McLaren, W. et al. The Ensembl variant effect predictor. Genome Biol. 17, 122 (2016).
Google Scholar
Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).
Google Scholar
Yu, K. et al. Meta-imputation: an efficient method to combine genotype data after imputation with multiple reference panels. Am. J. Hum. Genet. 109, 1007–1015 (2022).
Google Scholar
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
Google Scholar
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, https://doi.org/10.1186/s13742-015-0047-8 (2015).
Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).
Google Scholar
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).
Google Scholar
Wangkumhang, P., Greenfield, M. & Hellenthal, G. An efficient method to identify, date, and describe admixture events using haplotype information. Genome Res. 32, 1553–1564 (2022).
Google Scholar
Hellenthal, G. et al. A genetic atlas of human admixture history. Science 343, 747–751 (2014).
Google Scholar
Zhou, W. et al. Scalable generalized linear mixed model for region-based association tests in large biobanks and cohorts. Nat. Genet. 52, 634–639 (2020).
Google Scholar
Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).
Google Scholar
Lonsdale, J. et al. The Genotype–Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).
Google Scholar
Zhao, H. et al. CrossMap: a versatile tool for coordinate conversion between genome assemblies. Bioinformatics 30, 1006–1007 (2014).
Google Scholar