Strange IndiaStrange India


  • Sailer, T. et al. Measurement of the bound-electron g-factor difference in coupled ions. Nature 606, 479–483 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanneke, D., Fogwell, S. & Gabrielse, G. New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Aoyama, T., Hayakawa, M., Kinoshita, T. & Nio, M. Tenth-order QED contribution to the electron g − 2 and an improved value of the fine structure constant. Phys. Rev. Lett. 109, 111807 (2012).

    ADS 
    PubMed 

    Google Scholar 

  • Morel, L., Yao, Z., Cladé, P. & Guellati-Khélifa, S. Determination of the fine-structure constant with an accuracy of 81 parts per trillion. Nature 588, 61–65 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Biesheuvel, J. et al. Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD+. Nat. Commun. 7, 10385 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rengelink, R. J. et al. Precision spectroscopy of helium in a magic wavelength optical dipole trap. Nat. Phys. 14, 1132–1137 (2018).

    CAS 

    Google Scholar 

  • Yerokhin, V. A., Pachucki, K. & Patkóš, V. Theory of the Lamb shift in hydrogen and light hydrogen-like ions. Ann. Phys. 531, 1800324 (2019).

    Google Scholar 

  • Yerokhin, V. A., Patkóš, V. & Pachucki, K. Atomic structure calculations of helium with correlated exponential functions. Symmetry 13, 1246 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Shabaev, V. M. Two-time Green’s function method in quantum electrodynamics of high-Z few-electron atoms. Phys. Rep. 356, 119–228 (2002).

    ADS 
    CAS 

    Google Scholar 

  • Indelicato, P. & Mohr, P.J. in Handbook of Relativistic Quantum Chemistry (ed. Liu, W.) 131–242 (Springer, 2016).

  • Yerokhin, V. A. & Shabaev, V. M. Lamb shift of n = 1 and n = 2 states of hydrogenlike atoms, 1 ≤ Z ≤ 110. J. Phys. Chem. Ref. Data 44, 033103 (2015).

    ADS 

    Google Scholar 

  • Malyshev, A. V., Kozhedub, Y. S. & Shabaev, V. M. Ab initio calculations of the 2p3/2 → 2s transition in He-, Li-, and Be-like uranium. Phys. Rev. A 107, 042806 (2023).

    ADS 
    CAS 

    Google Scholar 

  • Kozlov, M. G., Safronova, M. S., López-Urrutia, J. R. C. & Schmidt, P. O. Highly charged ions: optical clocks and applications in fundamental physics. Rev. Mod. Phys 90, 045005 (2018).

    ADS 
    CAS 

    Google Scholar 

  • King, S. A. et al. An optical atomic clock based on a highly charged ion. Nature 611, 43–47 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys 90, 025008 (2019).

    ADS 
    MathSciNet 

    Google Scholar 

  • Abi, B. et al. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Phys. Rev. Lett. 126, 141801 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gurung, L., Babij, T. J., Hogan, S. D. & Cassidy, D. B. Precision microwave spectroscopy of the positronium n = 2 fine structure. Phys. Rev. Lett. 125, 073002 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Volotka, A. V. et al. Test of many-electron QED effects in the hyperfine splitting of heavy high-Z ions. Phys. Rev. Lett. 108, 073001 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ullmann, J. et al. High precision hyperfine measurements in bismuth challenge bound-state strong-field QED. Nat. Commun. 8, 15484 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Skripnikov, L. V. et al. New nuclear magnetic moment of 209Bi: resolving the bismuth hyperfine puzzle. Phys. Rev. Lett. 120, 093001 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sturm, S. et al. g factor of hydrogenlike 28Si13+. Phys. Rev. Lett. 107, 023002 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Glazov, D. A. et al. g factor of lithiumlike silicon: new challenge to bound-state QED. Phys. Rev. Lett. 123, 173001 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kosheleva, V. P., Volotka, A. V., Glazov, D. A., Zinenko, D. V. & Fritzsche, S. g factor of lithiumlike silicon and calcium: resolving the disagreement between theory and experiment. Phys. Rev. Lett. 128, 103001 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Morgner, J. et al. Stringent test of QED with hydrogen-like tin. Nature 622, 53–57 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shabaev, V. M. et al. Stringent tests of QED using highly charged ions. Hyperfine Interact. 239, 60 (2018).

    ADS 

    Google Scholar 

  • Indelicato, P. QED tests with highly charged ions. J. Phys. B 52, 232001 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Gumberidze, A. et al. Quantum electrodynamics in strong electric fields: the ground-state Lamb shift in hydrogenlike uranium. Phys. Rev. Lett. 94, 223001 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gumberidze, A. et al. Electron-electron interaction in strong electromagnetic fields: the two-electron contribution to the ground-state energy in He-like uranium. Phys. Rev. Lett. 92, 203004–4 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Thorn, D. B. et al. Precision measurement of the K-shell spectrum from highly charged xenon with an array of x-ray calorimeters. Phys. Rev. Lett. 103, 163001 (2009).

    ADS 
    PubMed 

    Google Scholar 

  • Trassinelli, M. et al. Observation of the 2p3/2 → 2s1/2 intra-shell transition in He-like uranium. Europhys. Lett. 87, 63001 (2009).

    ADS 

    Google Scholar 

  • Steck, M. & Litvinov, Y. A. Heavy-ion storage rings and their use in precision experiments with highly charged ions. Prog. Part. Nucl. Phys. 115, 103811 (2020).

    CAS 

    Google Scholar 

  • Beiersdorfer, P., Chen, H., Thorn, D. B. & Trabert, E. Measurement of the two-loop Lamb shift in lithiumlike U89+. Phys. Rev. Lett. 95, 233003 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hengstler, D. et al. Towards FAIR: first measurements of metallic magnetic calorimeters for high-resolution x-ray spectroscopy at GSI. Phys. Scripta T166, 014054 (2015).

    ADS 

    Google Scholar 

  • Kraft-Bermuth, S. et al. Precise determination of the 1s Lamb shift in hydrogen-like lead and gold using microcalorimeters. J. Phys. B 50, 055603 (2017).

    ADS 

    Google Scholar 

  • Gassner, T. et al. Wavelength-dispersive spectroscopy in the hard x-ray regime of a heavy highly-charged ion: the 1s Lamb shift in hydrogen-like gold. New J. Phys. 20, 073033 (2018).

    ADS 

    Google Scholar 

  • Beiersdorfer, P., Knapp, D., Marrs, R. E., Elliott, S. R. & Chen, M. H. Structure and Lamb shift of 2s1/−2p3/2 levels in lithiumlike U89+ through neonlike U82+. Phys. Rev. Lett. 71, 3939 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Beiersdorfer, P. Spectral measurements of few-electron uranium ions produced and trapped in a high-energy electron beam ion trap. Nucl. Instrum. Methods Phys. Res. B 99, 114–116 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Deslattes, R. D. et al. X-ray transition energies: new approach to a comprehensive evaluation. Rev. Mod. Phys. 75, 35–99 (2003).

    ADS 
    CAS 

    Google Scholar 

  • Trassinelli, M. et al. Doppler-tuned Bragg spectroscopy of excited levels in He-like uranium: a discussion of the uncertainty contributions. J. Phys. Conf. Ser. 163, 012026 (2009).

    Google Scholar 

  • Artemyev, A. N., Shabaev, V. M., Yerokhin, V. A., Plunien, G. & Soff, G. QED calculation of the n = 1 and n = 2 energy levels in He-like ions. Phys. Rev. A 71, 062104 (2005).

    ADS 

    Google Scholar 

  • Kozhedub, Y. S., Malyshev, A. V., Glazov, D. A., Shabaev, V. M. & Tupitsyn, I. I. QED calculation of electron-electron correlation effects in heliumlike ions. Phys. Rev. A 100, 062506 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Drake, G. W. F. Theoretical energies for the n = 1 and 2 states of the helium isoelectronic sequence up to Z = 100. Can. J. Phys. 66, 586 (1988).

    ADS 
    CAS 

    Google Scholar 

  • Chen, M. H., Cheng, K. T. & Johnson, W. R. Relativistic configuration-interaction calculations of n = 2 triplet states of heliumlike ions. Phys. Rev. A 47, 3692 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Plante, D. R., Johnson, W. R. & Sapirstein, J. Relativistic all-order many-body calculations of the n = 1 and n = 2 states of heliumlike ions. Phys. Rev. A 49, 3519–3530 (1994).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, K. T., Chen, M. H. & Sapirstein, J. Quantum electrodynamic corrections in high-Z Li-like and Be-like ions. Phys. Rev. A 62, 054501 (2000).

    ADS 

    Google Scholar 

  • Stöhlker, T. et al. Charge-exchange cross sections and beam lifetimes for stored and decelerated bare uranium ions. Phys. Rev. A 58, 2043–2050 (1998).

    ADS 

    Google Scholar 

  • Franzke, B. The heavy ion storage and cooler ring project ESR at GSI. Nucl. Instrum. Methods Phys. Res. B 24-25, 18–25 (1987).

    ADS 

    Google Scholar 

  • Kühnel, M. et al. Low-Z internal target from a cryogenically cooled liquid microjet source. Nucl. Instrum. Methods Phys. Res. A 602, 311–314 (2009).

    ADS 

    Google Scholar 

  • Fourment, C. et al. Broadband, high dynamics and high resolution charge coupled device-based spectrometer in dynamic mode for multi-keV repetitive x-ray sources. Rev. Sci. Instrum. 80, 083505 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zamponi, F., Kämpfer, T., Morak, A., Uschmann, I. & Förster, E. Characterization of a deep depletion, back-illuminated charge-coupled device in the x-ray range. Rev. Sci. Instrum. 76, 116101 (2005).

    ADS 

    Google Scholar 

  • Trassinelli, M. Bayesian data analysis tools for atomic physics. Nucl. Instrum. Methods Phys. Res. B 408, 301–312 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Trassinelli, M. The Nested_fit data analysis program. Proceedings 33, 14 (2019).

    Google Scholar 

  • Trassinelli, M. & Ciccodicola, P. Mean shift cluster recognition method implementation in the nested sampling algorithm. Entropy 22, 185 (2020).

    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trassinelli, M. Shape and satellite studies of highly charged ions x-ray spectra using bayesian methods. Atoms 11, 64 (2023).

    ADS 
    CAS 

    Google Scholar 

  • Weber, G. et al. Total projectile electron loss cross sections of U28+ ions in collisions with gaseous targets ranging from hydrogen to krypton. Phys. Rev. ST Accel. Beams 18, 034403 (2015).

    ADS 

    Google Scholar 

  • Gassner, T. & Beyer, H. F. Spatial characterization of the internal gas target at the ESR for the FOCAL experiment. Phys. Scripta 2015, 014052 (2015).

    Google Scholar 

  • Schmelling, M. Averaging correlated data. Phys. Scr. 51, 676 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Bevington, P. R. & Robinson, D. K. Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, 2003).

  • Gregory, P. Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica Support (Cambridge Univ. Press, 2005).

  • Froese Fischer, C. The Hartree-Fock Method for Atoms (Wiley, 1977).

  • Gorceix, O., Indelicato, P. & Desclaux, J. P. Multiconfiguration Dirac-Fock studies of two-electron ions. I. Electron-electron interaction. J. Phys. B 20, 639 (1987).

    ADS 
    CAS 

    Google Scholar 

  • Gorceix, O. & Indelicato, P. Effect of the complete Breit interaction on two-electron ion energy levels. Phys. Rev. A 37, 1087–1094 (1988).

    ADS 
    CAS 

    Google Scholar 

  • Indelicato, P. & Desclaux, J. P. Multiconfiguration Dirac-Fock calculations of transition energies with QED corrections in three-electron ions. Phys. Rev. A 42, 5139–5149 (1990).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shabaev, V. M. QED theory of the nuclear recoil effect in atoms. Phys. Rev. A 57, 59–67 (1998).

    ADS 
    CAS 

    Google Scholar 

  • Shabaev, V. M. & Artemyev, A. N. Relativistic nuclear recoil corrections to the energy levels of multicharged ions. J. Phys. B 27, 1307 (1994).

    ADS 
    CAS 

    Google Scholar 

  • Li, J. et al. Mass- and field-shift isotope parameters for the 2s−2p resonance doublet of lithiumlike ions. Phys. Rev. A 86, 022518 (2012).

    ADS 

    Google Scholar 

  • Mohr, P. J. & Soff, G. Nuclear size correction to the electron self-energy. Phys. Rev. Lett. 70, 158–161 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Beier, T., Mohr, P. J., Persson, H. & Soff, G. Influence of nuclear size on QED corrections in hydrogenlike heavy ions. Phys. Rev. A 58, 954 (1998).

    ADS 
    CAS 

    Google Scholar 

  • Indelicato, P. Nonperturbative evaluation of some QED contributions to the muonic hydrogen n=2 Lamb shift and hyperfine structure. Phys. Rev. A 87, 022501 (2013).

    ADS 

    Google Scholar 

  • Shabaev, V. M., Tupitsyn, I. I. & Yerokhin, V. A. Model operator approach to the Lamb shift calculations in relativistic many-electron atoms. Phys. Rev. A 88, 012513 (2013).

    ADS 

    Google Scholar 

  • Shabaev, V. M., Tupitsyn, I. I. & Yerokhin, V. A. QEDMOD: Fortran program for calculating the model Lamb-shift operator. Comp. Phys. Commun. 189, 175–181 (2015).

  • Yerokhin, V. A. Two-loop self-energy in the Lamb shift of the ground and excited states of hydrogenlike ions. Phys. Rev. A 97, 052509 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Yerokhin, V. A., Indelicato, P. & Shabaev, V. M. Nonperturbative calculation of the two-loop Lamb shift in Li-like ions. Phys. Rev. Lett. 97, 253004 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yerokhin, V. A., Indelicato, P. & Shabaev, V. M. Two-loop QED corrections in few-electron ions. Can. J. Phys. 85, 521–529 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Yerokhin, V. A., Indelicato, P. & Shabaev, V. M. Two-loop QED corrections with closed fermion loops. Phys. Rev. A 77, 062510 (2008).

    ADS 

    Google Scholar 

  • Angeli, I. & Marinova, K. P. Table of experimental nuclear ground state charge radii: an update. At. Data Nucl. Data Tables 99, 69–95 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Plunien, G., Müller, B., Greiner, W. & Soff, G. Nuclear polarization contribution to the Lamb shift in heavy atoms. Phys. Rev. A 39, 5428–5431 (1989).

    ADS 
    CAS 

    Google Scholar 

  • Plunien, G. & Soff, G. Nuclear-polarization contribution to the Lamb shift in actinide nuclei. Phys. Rev. A 51, 1119–1131 (1995).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Plunien, G. & Soff, G. Erratum: nuclear-polarization contribution to the Lamb shift in actinide nuclei. Phys. Rev. A 53, 4614–4615 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *