Strange IndiaStrange India


  • Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kabashi, E. et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet. 40, 572–574 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Van Deerlin, V. M. et al. TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol. 7, 409–416 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borroni, B. et al. Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum. Mutat. 30, E974–E983 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kovacs, G. G. et al. TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Mov. Disord. 24, 1842–1847 (2009).

    Article 

    Google Scholar 

  • Mackenzie, I. R. A. et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 122, 111–113 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arseni, D. et al. Structure of pathological TDP-43 filaments from ALS with FTLD. Nature 601, 139–143 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ayala, Y. M. et al. Structural determinants of the cellular localization and shuttling of TDP-43. J. Cell Sci. 121, 3778–3785 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Afroz, T. et al. Functional and dynamic polymerization of the ALS-linked protein TDP-43 antagonizes its pathologic aggregation. Nat. Commun. 8, 45 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasegawa, M. et al. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann. Neurol. 64, 60–70 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, W.-L. & Dickson, D. W. Ultrastructural localization of TDP-43 in filamentous neuronal inclusions in various neurodegenerative diseases. Acta Neuropathol. 116, 205–213 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mori, F. et al. Maturation process of TDP-43-positive neuronal cytoplasmic inclusions in amyotrophic lateral sclerosis with and without dementia. Acta Neuropathol. 116, 193–203 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thorpe, J. R., Tang, H., Atherton, J. & Cairns, N. J. Fine structural analysis of the neuronal inclusions of frontotemporal lobar degeneration with TDP-43 proteinopathy. J. Neural Transm. 115, 1661–1671 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nishihira, Y. et al. Sporadic amyotrophic lateral sclerosis: two pathological patterns shown by analysis of distribution of TDP-43-immunoreactive neuronal and glial cytoplasmic inclusions. Acta Neuropathol. 116, 169–182 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nonaka, T. et al. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep. 4, 124–134 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cracco, L. et al. Distinguishing post-translational modifications in dominantly inherited frontotemporal dementias: FTLD-TDP type A (GRN) vs type B (C9orf72). Neuropathol. Appl. Neurobiol. 48, e12836 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tarutani, A. et al. Ultrastructural and biochemical classification of pathogenic tau, α-synuclein and TDP-43. Acta Neuropathol. 143, 613–640 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robinson, J. L. et al. TDP-43 skeins show properties of amyloid in a subset of ALS cases. Acta Neuropathol. 125, 121–131 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, Y. X. et al. Amyloid fibrils in FTLD-TDP are composed of TMEM106B and not TDP-43. Nature 605, 304–309 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schweighauser, M. et al. Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature 605, 310–314 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, A. et al. Homotypic fibrillization of TMEM106B across diverse neurodegenerative diseases. Cell 185, 1346–1355.e15 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fan, Y. et al. Generic amyloid fibrillation of TMEM106B in patient with Parkinson’s disease dementia and normal elders. Cell Res. 32, 585–588 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoq, Md. R. et al. Cross-β helical filaments of tau and TMEM106B in gray and white matter of multiple system tauopathy with presenile dementia. Acta Neuropathol. 145, 707–710 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cruts, M. et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920–924 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Perneel, J. et al. Accumulation of TMEM106B C-terminal fragments in neurodegenerative disease and aging. Acta Neuropathol. 145, 285–302 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Vicente,  C. T. et al. C-terminal TMEM106B fragments in human brain correlate with disease-associated TMEM106B haplotypes. Brain https://doi.org/10.1093/brain/awad133 (2023).

  • Kametani, F. et al. Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains. Sci. Rep. 6, 23281 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ulamec, S. M., Brockwell, D. J. & Radford, S. E. Looking beyond the core: the role of flanking regions in the aggregation of amyloidogenic peptides and proteins. Front. Neurosci. 14, 611285 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Y. et al. Structures of α-synuclein filaments from human brains with Lewy pathology. Nature 610, 791–795 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Falcon, B. et al. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 568, 420–423 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schweighauser, M. et al. Structures of α-synuclein filaments from multiple system atrophy. Nature 585, 464–469 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Radamaker, L. et al. Cryo-EM reveals structural breaks in a patient-derived amyloid fibril from systemic AL amyloidosis. Nat. Commun. 12, 875 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, A. et al. Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol. Cell. Proteomics 13, 372–387 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aikio, M. et al. Opposing roles of p38α-mediated phosphorylation and arginine methylation in driving TDP-43 proteinopathy. Preprint at bioRxiv https://doi.org/10.1101/2021.08.04.455154 (2021).

  • Blanc, R. S. & Richard, S. Arginine methylation: the coming of age. Mol. Cell 65, 8–24 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tanikawa, C. et al. Citrullination of RGG motifs in FET proteins by PAD4 regulates protein aggregation and ALS susceptibility. Cell Rep. 22, 1473–1483 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mondal, S. & Thompson, P. R. Chemical biology of protein citrullination by the protein A arginine deiminases. Curr. Opin. Chem. Biol. 63, 19–27 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, Y. et al. Structure-based classification of tauopathies. Nature 598, 359–363 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsuji, H. et al. Molecular analysis and biochemical classification of TDP-43 proteinopathy. Brain 135, 3380–3391 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conicella, A. E., Zerze, G. H., Mittal, J. & Fawzi, N. L. ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24, 1537–1549 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knight, A. C. et al. Head-to-head comparison of Tau-PET radioligands for imaging TDP-43 in post-mortem ALS brain. Mol. Imaging Biol. 25, 513–527 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Laferrière, F. et al. TDP-43 extracted from frontotemporal lobar degeneration subject brains displays distinct aggregate assemblies and neurotoxic effects reflecting disease progression rates. Nat. Neurosci. 22, 65 (2019).

    Article 
    PubMed 

    Google Scholar 

  • De Rossi, P. et al. FTLD-TDP assemblies seed neoaggregates with subtype-specific features via a prion-like cascade. EMBO Rep. 22, e53877 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Porta, S. et al. Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo. Nat. Commun. 9, 4220 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, Q., Boyer, D. R., Sawaya, M. R., Ge, P. & Eisenberg, D. S. Cryo-EM structures of four polymorphic TDP-43 amyloid cores. Nat. Struct. Mol. Biol. 26, 619–627 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Q., Babinchak, W. M. & Surewicz, W. K. Cryo-EM structure of amyloid fibrils formed by the entire low complexity domain of TDP-43. Nat. Commun. 12, 1620 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, S. T. et al. Seeding the aggregation of TDP-43 requires post-fibrillization proteolytic cleavage. Nat. Neurosci. 26, 983–996 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huey, E. D. et al. Characteristics of frontotemporal dementia patients with a Progranulin mutation. Ann. Neurol. 60, 374–380 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spina, S. et al. Clinicopathologic features of frontotemporal dementia with Progranulin sequence variation. Neurology 68, 820–827 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, S. & Scheres, S. H. W. Helical reconstruction in RELION. J. Struct. Biol. 198, 163–176 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J. 478, 4169–4185 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scheres, S. H. W. Amyloid structure determination in RELION -3.1. Acta Crystallogr. D Struct. Biol. 76, 94–101 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Casañal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of electron cryo-microscopy and crystallographic data. Protein Sci. 29, 1055–1064 (2020).

    Article 

    Google Scholar 

  • Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519–530 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D Struct. Biol. 71, 136–153 (2015).

    Article 
    CAS 

    Google Scholar 

  • Yamashita, K., Palmer, C. M., Burnley, T. & Murshudov, G. N. Cryo-EM single-particle structure refinement and map calculation using Servalcat. Acta Crystallogr. D Struct. Biol. 77, 1282–1291 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *