Togni, A. Metallocenes: Synthesis, Reactivity, Applications (Wiley-VCH, 1998).
Štěpnička, P. Ferrocenes: Ligands, Materials and Biomolecules (John Wiley & Sons, Ltd, 2008).
Miyajima, K., Knickelbein, M. B. & Nakajima, A. Stern−Gerlach study of multidecker lanthanide–cyclooctatetraene sandwich clusters. J. Phys. Chem. A. 112, 366–375 (2008).
Google Scholar
Hosoya, N. et al. Lanthanide organometallic sandwich nanowires: formation mechanism. J. Phys. Chem. A. 109, 9–12 (2005).
Google Scholar
Kurikawa, T. et al. Multiple-decker sandwich complexes of lanthanide-1,3,5,7-cyclooctatetraene [Lnn(C8H8)m] (Ln = Ce, Nd, Eu, Ho, and Yb); localized ionic bonding structure. J. Am. Chem. Soc. 120, 11766–11772 (1998).
Google Scholar
Tsuji, T. et al. Liquid-phase synthesis of multidecker organoeuropium sandwich complexes and their physical properties. J. Phys. Chem. C. 118, 5896–5907 (2014).
Google Scholar
Huttmann, F., Schleheck, N., Atodiresei, N. & Michely, T. On-surface synthesis of sandwich molecular nanowires on graphene. J. Am. Chem. Soc. 139, 9895–9900 (2017).
Google Scholar
Hosoya, N. et al. Formation and electronic structures of organoeuropium sandwich nanowires. J. Phys. Chem. A 118, 8298–8308 (2014).
Google Scholar
Miyajima, K., Nakajima, A., Yabushita, S., Knickelbein, M. B. & Kaya, K. Ferromagnetism in one-dimensional vanadium–benzene sandwich clusters. J. Am. Chem. Soc. 126, 13202–13203 (2004).
Google Scholar
Xiang, H., Yang, J., Hou, J. G. & Zhu, Q. One-dimensional transition metal–benzene sandwich polymers: possible ideal conductors for spin transport. J. Am. Chem. Soc. 128, 2310–2314 (2006).
Google Scholar
Kealy, T. J. & Pauson, P. L. A new type of organo-iron compound. Nature 168, 1039–1040 (1951).
Google Scholar
Fischer, E. O. & Pfab, W. Cyclopentadien-Metallkomplexe, ein neuer Typ metallorganischer Verbindungen. Z. Naturforsch., B: Chem. Sci. 7, 377–379 (1952).
Google Scholar
Wilkinson, G., Rosenblum, M., Whiting, M. C. & Woodward, R. B. The structure of iron bis-cyclopentadienyl. J. Am. Chem. Soc. 74, 2125–2126 (1952).
Google Scholar
Werner, H. & Salzer, A. Die Synthese Eines Ersten Doppel-Sandwich-Komplexes: Das Dinickeltricyclopentadienyl-Kation. Synth. React. Inorg. Met.-Org. Chem. 2, 239–248 (1972).
Elschenbroich, C. Organometallics (Wiley-VCH, 2008).
Zhuo, H.-C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).
Google Scholar
Kreno, L. E. et al. Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).
Google Scholar
Edelmann, F. T. Multiple-decker sandwich complexes of f-elements. New J. Chem. 35, 517–528 (2011).
Google Scholar
Grossmann, B. et al. Seven doubly bridged ferrocene units in a cycle. Angew. Chem. Int. Ed. 36, 387–389 (1997).
Google Scholar
Herbert, D. E. et al. Redox-active metallomacrocycles and cyclic metallopolymers: photocontrolled ring-opening oligomerization and polymerization of silicon-bridged [1]ferrocenophanes using substitutionally-labile Lewis bases as initiators. J. Am. Chem. Soc. 131, 14958–14968 (2009).
Google Scholar
Chan, W. Y., Lough, A. J. & Manners, I. Organometallic macrocycles and cyclic polymers by the bipyridine-initiated photolytic ring opening of a silicon-bridged [1]ferrocenophane. Angew. Chem. Int. Ed. 46, 9069–9072 (2007).
Google Scholar
Watts, W. E. The [1,1]ferrocenophane system 1. J. Am. Chem. Soc. 88, 855–856 (1966).
Google Scholar
Katz, T. J., Acton, N. & Martin, G. [1n]Ferrocenophanes. J. Am. Chem. Soc. 91, 2804–2805 (1969).
Google Scholar
Mueller-Westerhoff, U. T. & Swiegers, G. F. A synthesis of the cyclic ferrocene tetramer [1]4ferrocenophane. Chem. Lett. 23, 67–68 (1994).
Google Scholar
Inkpen, M. S. et al. Oligomeric ferrocene rings. Nat. Chem. 8, 825–830 (2016).
Google Scholar
Wayda, A. L., Mukerji, I., Dye, J. L. & Rogers, R. D. Divalent lanthanoid synthesis in liquid ammonia. 2. The synthesis and X-ray crystal structure of (C8H8)Yb(C5H5N)3.1/2C5H5N. Organometallics 6, 1328–1332 (1987).
Google Scholar
Hayes, R. G. & Thomas, J. L. Synthesis of cyclooctatetraenyleuropium and cyclooctatetraenylytterbium. J. Am. Chem. Soc. 91, 6876–6876 (1969).
Google Scholar
Münzfeld, L., Hauser, A., Hädinger, P., Weigend, F. & Roesky, P. W. The archetypal homoleptic lanthanide quadruple-decker—synthesis, mechanistic studies, and quantum chemical investigations. Angew. Chem. Int. Ed. 60, 24493–24499 (2021).
Google Scholar
Overby, J. S., Hanusa, T. P. & Young, V. G. Redetermination of the zigzag modification of plumbocene at 173 K. Inorg. Chem. 37, 163–165 (1998).
Google Scholar
Morrison, C. A., Wright, D. S. & Layfield, R. A. Interpreting molecular crystal disorder in plumbocene, Pb(C5H5)2: insight from theory. J. Am. Chem. Soc. 124, 6775–6780 (2002).
Google Scholar
Suta, M., Kühling, M., Liebing, P., Edelmann, F. T. & Wickleder, C. Photoluminescence properties of the ‘bent sandwich-like’ compounds [Eu(TpiPr2)2] and [Yb(TpiPr2)2] – intermediates between nitride-based phosphors and metallocenes. J. Lumin. 187, 62–68 (2017).
Sztainbuch, I. W., Soos, Z. G. & Spiro, T. G. Herzberg–Teller coupling and configuration interaction in a metalloporphyrin model: 1,3,5,7‐tetramethylcyclo‐octatetraene dianion. J. Chem. Phys. 101, 4644–4648 (1994).
Google Scholar
Dorenbos, P. Anomalous luminescence of Eu2+ and Yb2+ in inorganic compounds. J. Phys. Condens. Matter 15, 2645–2665 (2003).
Google Scholar
TURBOMOLE v.7.6 (University of Karlsruhe and Forschungszentrum Karlsruhe, 1989–2007).
Balasubramani, S. G. et al. TURBOMOLE: modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 152, 184107 (2020).
Google Scholar
Foster, J. M. & Boys, S. F. Canonical configurational interaction procedure. Rev. Mod. Phys. 32, 300–302 (1960).
Google Scholar
Reed, A. E., Weinstock, R. B. & Weinhold, F. Natural population analysis. J. Chem. Phys. 83, 735–746 (1985).
Google Scholar
Schneider, E. K., Weis, P., Münzfeld, L., Roesky, P. W. & Kappes, M. M. Anionic stacks of alkali-interlinked yttrium and dysprosium bicyclooctatetraenes in isolation. J. Am. Soc. Mass. Spectrom. 33, 695–703 (2022).
Google Scholar
Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A. 32, 751–767 (1976).
Google Scholar