Strange India All Strange Things About India and world


  • Togni, A. Metallocenes: Synthesis, Reactivity, Applications (Wiley-VCH, 1998).

  • Štěpnička, P. Ferrocenes: Ligands, Materials and Biomolecules (John Wiley & Sons, Ltd, 2008).

  • Miyajima, K., Knickelbein, M. B. & Nakajima, A. Stern−Gerlach study of multidecker lanthanide–cyclooctatetraene sandwich clusters. J. Phys. Chem. A. 112, 366–375 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hosoya, N. et al. Lanthanide organometallic sandwich nanowires: formation mechanism. J. Phys. Chem. A. 109, 9–12 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kurikawa, T. et al. Multiple-decker sandwich complexes of lanthanide-1,3,5,7-cyclooctatetraene [Lnn(C8H8)m] (Ln = Ce, Nd, Eu, Ho, and Yb); localized ionic bonding structure. J. Am. Chem. Soc. 120, 11766–11772 (1998).

    Article 
    CAS 

    Google Scholar 

  • Tsuji, T. et al. Liquid-phase synthesis of multidecker organoeuropium sandwich complexes and their physical properties. J. Phys. Chem. C. 118, 5896–5907 (2014).

    Article 
    CAS 

    Google Scholar 

  • Huttmann, F., Schleheck, N., Atodiresei, N. & Michely, T. On-surface synthesis of sandwich molecular nanowires on graphene. J. Am. Chem. Soc. 139, 9895–9900 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hosoya, N. et al. Formation and electronic structures of organoeuropium sandwich nanowires. J. Phys. Chem. A 118, 8298–8308 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miyajima, K., Nakajima, A., Yabushita, S., Knickelbein, M. B. & Kaya, K. Ferromagnetism in one-dimensional vanadium–benzene sandwich clusters. J. Am. Chem. Soc. 126, 13202–13203 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xiang, H., Yang, J., Hou, J. G. & Zhu, Q. One-dimensional transition metal–benzene sandwich polymers: possible ideal conductors for spin transport. J. Am. Chem. Soc. 128, 2310–2314 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kealy, T. J. & Pauson, P. L. A new type of organo-iron compound. Nature 168, 1039–1040 (1951).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fischer, E. O. & Pfab, W. Cyclopentadien-Metallkomplexe, ein neuer Typ metallorganischer Verbindungen. Z. Naturforsch., B: Chem. Sci. 7, 377–379 (1952).

    Article 

    Google Scholar 

  • Wilkinson, G., Rosenblum, M., Whiting, M. C. & Woodward, R. B. The structure of iron bis-cyclopentadienyl. J. Am. Chem. Soc. 74, 2125–2126 (1952).

    Article 
    CAS 

    Google Scholar 

  • Werner, H. & Salzer, A. Die Synthese Eines Ersten Doppel-Sandwich-Komplexes: Das Dinickeltricyclopentadienyl-Kation. Synth. React. Inorg. Met.-Org. Chem. 2, 239–248 (1972).

  • Elschenbroich, C. Organometallics (Wiley-VCH, 2008).

  • Zhuo, H.-C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).

    Article 

    Google Scholar 

  • Kreno, L. E. et al. Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Edelmann, F. T. Multiple-decker sandwich complexes of f-elements. New J. Chem. 35, 517–528 (2011).

    Article 
    CAS 

    Google Scholar 

  • Grossmann, B. et al. Seven doubly bridged ferrocene units in a cycle. Angew. Chem. Int. Ed. 36, 387–389 (1997).

    Article 
    CAS 

    Google Scholar 

  • Herbert, D. E. et al. Redox-active metallomacrocycles and cyclic metallopolymers: photocontrolled ring-opening oligomerization and polymerization of silicon-bridged [1]ferrocenophanes using substitutionally-labile Lewis bases as initiators. J. Am. Chem. Soc. 131, 14958–14968 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chan, W. Y., Lough, A. J. & Manners, I. Organometallic macrocycles and cyclic polymers by the bipyridine-initiated photolytic ring opening of a silicon-bridged [1]ferrocenophane. Angew. Chem. Int. Ed. 46, 9069–9072 (2007).

    Article 
    CAS 

    Google Scholar 

  • Watts, W. E. The [1,1]ferrocenophane system 1. J. Am. Chem. Soc. 88, 855–856 (1966).

    Article 
    CAS 

    Google Scholar 

  • Katz, T. J., Acton, N. & Martin, G. [1n]Ferrocenophanes. J. Am. Chem. Soc. 91, 2804–2805 (1969).

    Article 
    CAS 

    Google Scholar 

  • Mueller-Westerhoff, U. T. & Swiegers, G. F. A synthesis of the cyclic ferrocene tetramer [1]4ferrocenophane. Chem. Lett. 23, 67–68 (1994).

    Article 

    Google Scholar 

  • Inkpen, M. S. et al. Oligomeric ferrocene rings. Nat. Chem. 8, 825–830 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wayda, A. L., Mukerji, I., Dye, J. L. & Rogers, R. D. Divalent lanthanoid synthesis in liquid ammonia. 2. The synthesis and X-ray crystal structure of (C8H8)Yb(C5H5N)3.1/2C5H5N. Organometallics 6, 1328–1332 (1987).

    Article 
    CAS 

    Google Scholar 

  • Hayes, R. G. & Thomas, J. L. Synthesis of cyclooctatetraenyleuropium and cyclooctatetraenylytterbium. J. Am. Chem. Soc. 91, 6876–6876 (1969).

    Article 
    CAS 

    Google Scholar 

  • Münzfeld, L., Hauser, A., Hädinger, P., Weigend, F. & Roesky, P. W. The archetypal homoleptic lanthanide quadruple-decker—synthesis, mechanistic studies, and quantum chemical investigations. Angew. Chem. Int. Ed. 60, 24493–24499 (2021).

    Article 

    Google Scholar 

  • Overby, J. S., Hanusa, T. P. & Young, V. G. Redetermination of the zigzag modification of plumbocene at 173 K. Inorg. Chem. 37, 163–165 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morrison, C. A., Wright, D. S. & Layfield, R. A. Interpreting molecular crystal disorder in plumbocene, Pb(C5H5)2: insight from theory. J. Am. Chem. Soc. 124, 6775–6780 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Suta, M., Kühling, M., Liebing, P., Edelmann, F. T. & Wickleder, C. Photoluminescence properties of the ‘bent sandwich-like’ compounds [Eu(TpiPr2)2] and [Yb(TpiPr2)2] – intermediates between nitride-based phosphors and metallocenes. J. Lumin. 187, 62–68 (2017).

  • Sztainbuch, I. W., Soos, Z. G. & Spiro, T. G. Herzberg–Teller coupling and configuration interaction in a metalloporphyrin model: 1,3,5,7‐tetramethylcyclo‐octatetraene dianion. J. Chem. Phys. 101, 4644–4648 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dorenbos, P. Anomalous luminescence of Eu2+ and Yb2+ in inorganic compounds. J. Phys. Condens. Matter 15, 2645–2665 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • TURBOMOLE v.7.6 (University of Karlsruhe and Forschungszentrum Karlsruhe, 1989–2007).

  • Balasubramani, S. G. et al. TURBOMOLE: modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 152, 184107 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Foster, J. M. & Boys, S. F. Canonical configurational interaction procedure. Rev. Mod. Phys. 32, 300–302 (1960).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Reed, A. E., Weinstock, R. B. & Weinhold, F. Natural population analysis. J. Chem. Phys. 83, 735–746 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schneider, E. K., Weis, P., Münzfeld, L., Roesky, P. W. & Kappes, M. M. Anionic stacks of alkali-interlinked yttrium and dysprosium bicyclooctatetraenes in isolation. J. Am. Soc. Mass. Spectrom. 33, 695–703 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A. 32, 751–767 (1976).

    Article 
    ADS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *