Strange IndiaStrange India


  • Ehlmann, B. L. & Edwards, C. S. Mineralogy of the Martian surface. Annu. Rev. Earth Planet. Sci. 42, 291–315 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Vasavada, A. R. Mission overview and scientific contributions from the Mars Science Laboratory Curiosity rover after eight years of surface operations. Space Sci. Rev. 218, 14 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kite, E. S. Geologic constraints on early Mars climate. Space Sci. Rev. 215, 10 (2019).

    Article 
    ADS 

    Google Scholar 

  • Sheldon, N. D. & Tabor, N. J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Sci. Rev. 95, 1–52 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wordsworth, R. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ramirez, R. M. & Craddock, R. A. The geological and climatological case for a warmer and wetter early Mars. Nat. Geosci. 11, 230–237 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Campbell, T. D. et al. Prebiotic condensation through wet–dry cycling regulated by deliquescence. Nat. Commun. 10, 4508 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Becker, S. et al. Wet–dry cycles enable the parallel origin of canonical and non-canonical nucleosides by continuous synthesis. Nat. Commun. 9, 163 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Farley, K. A. et al. In situ radiometric and exposure age dating of the Martian surface. Science 343, 1247166 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goodwin, A., Garwood, R. J. & Tartèse, R. A review of the “Black Beauty” Martian regolith breccia and its Martian habitability record. Astrobiology 22, 755–767 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Guzewich, S. D. et al. 3D simulations of the early Martian hydrological cycle mediated by a H2–CO2 greenhouse. J. Geophys. Res. Planets 126, e2021JE006825 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kamada, A., Kuroda, T., Kasaba, Y., Terada, N. & Nakagawa, H. Global climate and river transport simulations of early Mars around the Noachian and Hesperian boundary. Icarus 368, 114618 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kite, E. S., Steele, L. J., Mischna, M. A. & Richardson, M. I. Warm early Mars surface enabled by high-altitude water ice clouds. Proc. Natl Acad. Sci. USA 118, e2101959118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Turbet, M. & Forget, F. 3-D Global modelling of the early martian climate under a dense CO2 + H2 atmosphere and for a wide range of surface water inventories. Preprint at https://arxiv.org/abs/2103.10301 (2021).

  • Steakley, K., Murphy, J., Kahre, M., Haberle, R. & Kling, A. Testing the impact heating hypothesis for early Mars with a 3-D global climate model. Icarus 330, 169–188 (2019).

    Article 
    ADS 

    Google Scholar 

  • Stucky de Quay, G., Goudge, T. A., Kite, E. S., Fassett, C. I. & Guzewich, S. D. Limits on runoff episode duration for early Mars: integrating lake hydrology and climate models. Geophys. Res. Lett. 48, e2021GL093523 (2021).

    Article 
    ADS 

    Google Scholar 

  • Grotzinger, J. P. et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale Crater, Mars. Science 350, aac7575 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rapin, W. et al. An interval of high salinity in ancient Gale Crater lake on Mars. Nat. Geosci. 12, 889–895 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schieber, J. et al. Mars is a mirror—understanding the Pahrump Hills mudstones from a perspective of Earth analogues. Sedimentology 69, 2371–2435 (2022).

    Article 

    Google Scholar 

  • Milliken, R. E., Grotzinger, J. P. & Thomson, B. J. Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater. Geophys. Res. Lett. 37, L04201 (2010).

    Article 
    ADS 

    Google Scholar 

  • Bibring, J.-P. et al. Global mineralogical and aqueous mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lasser, J., Nield, J. M. & Goehring, L. Surface and subsurface characterisation of salt pans expressing polygonal patterns. Earth Syst. Sci. Data 12, 2881–2898 (2020).

    Article 
    ADS 

    Google Scholar 

  • Goodall, T. M., North, C. P. & Glennie, K. W. Surface and subsurface sedimentary structures produced by salt crusts. Sedimentology 47, 99–118 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Goehring, L., Conroy, R., Akhter, A., J. Clegg, W. & Routh, A. F. Evolution of mud-crack patterns during repeated drying cycles. Soft Matter 6, 3562–3567 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Goehring, L. Evolving fracture patterns: columnar joints, mud cracks and polygonal terrain. Phil. Trans. R. Soc. Math. Phys. Eng. Sci. 371, 20120353 (2013).

    ADS 

    Google Scholar 

  • Sadler, P. M. Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol. 89, 569–584 (1981).

    Article 
    ADS 

    Google Scholar 

  • Daniels, J. M. Floodplain aggradation and pedogenesis in a semiarid environment. Geomorphology 56, 225–242 (2003).

    Article 
    ADS 

    Google Scholar 

  • Kraus, M. J. Paleosols in clastic sedimentary rocks: their geologic applications. Earth Sci. Rev. 47, 41–70 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stein, N. et al. Desiccation cracks provide evidence of lake drying on Mars, Sutton Island member, Murray Formation, Gale Crater. Geology 46, 515–518 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Baccolo, G. et al. Jarosite formation in deep Antarctic ice provides a window into acidic, water-limited weathering on Mars. Nat. Commun. 12, 436 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niles, P. B. & Michalski, J. Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nat. Geosci. 2, 215–220 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Becker, S. et al. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science 366, 76–82 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Higgs, P. G. The effect of limited diffusion and wet–dry cycling on reversible polymerization reactions: implications for prebiotic synthesis of nucleic acids. Life 6, 24 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ross, D. S. & Deamer, D. Dry/wet cycling and the thermodynamics and kinetics of prebiotic polymer synthesis. Life 6, 28 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bristow, T. F. et al. Clay mineral diversity and abundance in sedimentary rocks of Gale Crater, Mars. Sci. Adv. 4, eaar3330 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bishop, J. L. et al. What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars. Planet. Space Sci. 86, 130–149 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pedreira-Segade, U., Feuillie, C., Pelletier, M., Michot, L. J. & Daniel, I. Adsorption of nucleotides onto ferromagnesian phyllosilicates: significance for the origin of life. Geochim. Cosmochim. Acta 176, 81–95 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Clark, B. C. & Kolb, V. M. Macrobiont: cradle for the origin of life and creation of a biosphere. Life 10, 278 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grotzinger, J. P. & Milliken, R. E. in Sedimentary Geology of Mars Vol. 102, (SEPM Society for Sedimentary Geology) 1–48 (2012).

  • Knoll, A. H. Paleobiological perspectives on early microbial evolution. Cold Spring Harb. Perspect. Biol. 7, a018093 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomson, B. J. et al. Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data. Icarus 214, 413–432 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Le Deit, L. et al. Sequence of infilling events in Gale Crater, Mars: results from morphology, stratigraphy, and mineralogy. J. Geophys. Res. Planets 118, 2439–2473 (2013).

    Article 
    ADS 

    Google Scholar 

  • Grotzinger, J. P. et al. Mars Science Laboratory Mission and science investigation. Space Sci. Rev. 170, 5–56 (2012).

    Article 
    ADS 

    Google Scholar 

  • Maurice, S. et al. The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: science objectives and mast unit description. Space Sci. Rev. 170, 95–166 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wiens, R. C. et al. The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: body unit and combined system tests. Space Sci. Rev. 170, 167–227 (2012).

    Article 
    ADS 

    Google Scholar 

  • Clegg, S. M. et al. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database. Spectrochim. Acta Part B 129, 64–85 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rapin, W. et al. Quantification of water content by laser induced breakdown spectroscopy on Mars. Spectrochim. Acta Part B 130, 82–100 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schieber, J. et al. Engraved on the rocks—Aeolian abrasion of Martian mudstone exposures and their relationship to modern wind patterns in Gale Crater, Mars. Depositional Rec. 6, 625–647 (2020).

    Article 

    Google Scholar 

  • Hartmann, W. K. & Neukum, G. Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165–194 (2001).

    Article 
    ADS 

    Google Scholar 

  • Quantin-Nataf, C., Craddock, R. A., Dubuffet, F., Lozac’h, L. & Martinot, M. Decline of crater obliteration rates during early Martian history. Icarus 317, 427–433 (2019).

    Article 
    ADS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *