Ehlmann, B. L. & Edwards, C. S. Mineralogy of the Martian surface. Annu. Rev. Earth Planet. Sci. 42, 291–315 (2014).
Google Scholar
Vasavada, A. R. Mission overview and scientific contributions from the Mars Science Laboratory Curiosity rover after eight years of surface operations. Space Sci. Rev. 218, 14 (2022).
Google Scholar
Kite, E. S. Geologic constraints on early Mars climate. Space Sci. Rev. 215, 10 (2019).
Google Scholar
Sheldon, N. D. & Tabor, N. J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Sci. Rev. 95, 1–52 (2009).
Google Scholar
Wordsworth, R. The climate of early Mars. Annu. Rev. Earth Planet. Sci. 44, 381–408 (2016).
Google Scholar
Ramirez, R. M. & Craddock, R. A. The geological and climatological case for a warmer and wetter early Mars. Nat. Geosci. 11, 230–237 (2018).
Google Scholar
Campbell, T. D. et al. Prebiotic condensation through wet–dry cycling regulated by deliquescence. Nat. Commun. 10, 4508 (2019).
Google Scholar
Becker, S. et al. Wet–dry cycles enable the parallel origin of canonical and non-canonical nucleosides by continuous synthesis. Nat. Commun. 9, 163 (2018).
Google Scholar
Farley, K. A. et al. In situ radiometric and exposure age dating of the Martian surface. Science 343, 1247166 (2014).
Google Scholar
Goodwin, A., Garwood, R. J. & Tartèse, R. A review of the “Black Beauty” Martian regolith breccia and its Martian habitability record. Astrobiology 22, 755–767 (2022).
Google Scholar
Guzewich, S. D. et al. 3D simulations of the early Martian hydrological cycle mediated by a H2–CO2 greenhouse. J. Geophys. Res. Planets 126, e2021JE006825 (2021).
Google Scholar
Kamada, A., Kuroda, T., Kasaba, Y., Terada, N. & Nakagawa, H. Global climate and river transport simulations of early Mars around the Noachian and Hesperian boundary. Icarus 368, 114618 (2021).
Google Scholar
Kite, E. S., Steele, L. J., Mischna, M. A. & Richardson, M. I. Warm early Mars surface enabled by high-altitude water ice clouds. Proc. Natl Acad. Sci. USA 118, e2101959118 (2021).
Google Scholar
Turbet, M. & Forget, F. 3-D Global modelling of the early martian climate under a dense CO2 + H2 atmosphere and for a wide range of surface water inventories. Preprint at https://arxiv.org/abs/2103.10301 (2021).
Steakley, K., Murphy, J., Kahre, M., Haberle, R. & Kling, A. Testing the impact heating hypothesis for early Mars with a 3-D global climate model. Icarus 330, 169–188 (2019).
Google Scholar
Stucky de Quay, G., Goudge, T. A., Kite, E. S., Fassett, C. I. & Guzewich, S. D. Limits on runoff episode duration for early Mars: integrating lake hydrology and climate models. Geophys. Res. Lett. 48, e2021GL093523 (2021).
Google Scholar
Grotzinger, J. P. et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale Crater, Mars. Science 350, aac7575 (2015).
Google Scholar
Rapin, W. et al. An interval of high salinity in ancient Gale Crater lake on Mars. Nat. Geosci. 12, 889–895 (2019).
Google Scholar
Schieber, J. et al. Mars is a mirror—understanding the Pahrump Hills mudstones from a perspective of Earth analogues. Sedimentology 69, 2371–2435 (2022).
Google Scholar
Milliken, R. E., Grotzinger, J. P. & Thomson, B. J. Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater. Geophys. Res. Lett. 37, L04201 (2010).
Google Scholar
Bibring, J.-P. et al. Global mineralogical and aqueous mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006).
Google Scholar
Lasser, J., Nield, J. M. & Goehring, L. Surface and subsurface characterisation of salt pans expressing polygonal patterns. Earth Syst. Sci. Data 12, 2881–2898 (2020).
Google Scholar
Goodall, T. M., North, C. P. & Glennie, K. W. Surface and subsurface sedimentary structures produced by salt crusts. Sedimentology 47, 99–118 (2000).
Google Scholar
Goehring, L., Conroy, R., Akhter, A., J. Clegg, W. & Routh, A. F. Evolution of mud-crack patterns during repeated drying cycles. Soft Matter 6, 3562–3567 (2010).
Google Scholar
Goehring, L. Evolving fracture patterns: columnar joints, mud cracks and polygonal terrain. Phil. Trans. R. Soc. Math. Phys. Eng. Sci. 371, 20120353 (2013).
Google Scholar
Sadler, P. M. Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol. 89, 569–584 (1981).
Google Scholar
Daniels, J. M. Floodplain aggradation and pedogenesis in a semiarid environment. Geomorphology 56, 225–242 (2003).
Google Scholar
Kraus, M. J. Paleosols in clastic sedimentary rocks: their geologic applications. Earth Sci. Rev. 47, 41–70 (1999).
Google Scholar
Stein, N. et al. Desiccation cracks provide evidence of lake drying on Mars, Sutton Island member, Murray Formation, Gale Crater. Geology 46, 515–518 (2018).
Google Scholar
Baccolo, G. et al. Jarosite formation in deep Antarctic ice provides a window into acidic, water-limited weathering on Mars. Nat. Commun. 12, 436 (2021).
Google Scholar
Niles, P. B. & Michalski, J. Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nat. Geosci. 2, 215–220 (2009).
Google Scholar
Becker, S. et al. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science 366, 76–82 (2019).
Google Scholar
Higgs, P. G. The effect of limited diffusion and wet–dry cycling on reversible polymerization reactions: implications for prebiotic synthesis of nucleic acids. Life 6, 24 (2016).
Google Scholar
Ross, D. S. & Deamer, D. Dry/wet cycling and the thermodynamics and kinetics of prebiotic polymer synthesis. Life 6, 28 (2016).
Google Scholar
Bristow, T. F. et al. Clay mineral diversity and abundance in sedimentary rocks of Gale Crater, Mars. Sci. Adv. 4, eaar3330 (2018).
Google Scholar
Bishop, J. L. et al. What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars. Planet. Space Sci. 86, 130–149 (2013).
Google Scholar
Pedreira-Segade, U., Feuillie, C., Pelletier, M., Michot, L. J. & Daniel, I. Adsorption of nucleotides onto ferromagnesian phyllosilicates: significance for the origin of life. Geochim. Cosmochim. Acta 176, 81–95 (2016).
Google Scholar
Clark, B. C. & Kolb, V. M. Macrobiont: cradle for the origin of life and creation of a biosphere. Life 10, 278 (2020).
Google Scholar
Grotzinger, J. P. & Milliken, R. E. in Sedimentary Geology of Mars Vol. 102, (SEPM Society for Sedimentary Geology) 1–48 (2012).
Knoll, A. H. Paleobiological perspectives on early microbial evolution. Cold Spring Harb. Perspect. Biol. 7, a018093 (2015).
Google Scholar
Thomson, B. J. et al. Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data. Icarus 214, 413–432 (2011).
Google Scholar
Le Deit, L. et al. Sequence of infilling events in Gale Crater, Mars: results from morphology, stratigraphy, and mineralogy. J. Geophys. Res. Planets 118, 2439–2473 (2013).
Google Scholar
Grotzinger, J. P. et al. Mars Science Laboratory Mission and science investigation. Space Sci. Rev. 170, 5–56 (2012).
Google Scholar
Maurice, S. et al. The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: science objectives and mast unit description. Space Sci. Rev. 170, 95–166 (2012).
Google Scholar
Wiens, R. C. et al. The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: body unit and combined system tests. Space Sci. Rev. 170, 167–227 (2012).
Google Scholar
Clegg, S. M. et al. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database. Spectrochim. Acta Part B 129, 64–85 (2017).
Google Scholar
Rapin, W. et al. Quantification of water content by laser induced breakdown spectroscopy on Mars. Spectrochim. Acta Part B 130, 82–100 (2017).
Google Scholar
Schieber, J. et al. Engraved on the rocks—Aeolian abrasion of Martian mudstone exposures and their relationship to modern wind patterns in Gale Crater, Mars. Depositional Rec. 6, 625–647 (2020).
Google Scholar
Hartmann, W. K. & Neukum, G. Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165–194 (2001).
Google Scholar
Quantin-Nataf, C., Craddock, R. A., Dubuffet, F., Lozac’h, L. & Martinot, M. Decline of crater obliteration rates during early Martian history. Icarus 317, 427–433 (2019).
Google Scholar