Strange IndiaStrange India


  • Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet. 43, 830–837 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Reddy, A. et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell 171, 481–494 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chapuy, B. et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 24, 679–690 (2018).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schmitz, R. et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. New Engl. J. Med. 378, 1396–1407 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Roschewski, M., Staudt, L. M. & Wilson, W. H. Diffuse large B-cell lymphoma-treatment approaches in the molecular era. Nat. Rev. Clin. Oncol. 11, 12–23 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rosenwald, A. et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. New Engl. J. Med. 346, 1937–1947 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Pasqualucci, L. & Dalla-Favera, R. Genetics of diffuse large B-cell lymphoma. Blood 131, 2307–2319 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Arthur, S. E. et al. Genome-wide discovery of somatic regulatory variants in diffuse large B-cell lymphoma. Nat. Commun. 9, 4001 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Wilson, W. H. et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat. Med. 21, 922–926 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wright, G. W. et al. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell 37, 551–568 e514 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lacy, S. E. et al. Targeted sequencing in DLBCL, molecular subtypes, and outcomes: a Haematological Malignancy Research Network report. Blood 135, 1759–1771 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mansour, M. R. et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346, 1373–1377 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Abraham, B. J. et al. Small genomic insertions form enhancers that misregulate oncogenes. Nat. Commun. 8, 14385 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Koues, O. I. et al. Enhancer sequence variants and transcription-factor deregulation synergize to construct pathogenic regulatory circuits in B-cell lymphoma. Immunity 42, 186–198 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341–346 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Honjo, T., Muramatsu, M. & Fagarasan, S. AID: how does it aid antibody diversity? Immunity 20, 659–668 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Qian, J. et al. B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell 159, 1524–1537 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Meng, F. L. et al. Convergent transcription at intragenic super-enhancers targets AID-initiated genomic instability. Cell 159, 1538–1548 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hubschmann, D. et al. Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas. Leukemia 35, 2002–2016 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ryan, R. J. et al. Detection of enhancer-associated rearrangements reveals mechanisms of oncogene dysregulation in B-cell lymphoma. Cancer Discov. 5, 1058–1071 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tippens, N. D. et al. Transcription imparts architecture, function and logic to enhancer units. Nat. Genet. 52, 1067–1075 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Pefanis, E. et al. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell 161, 774–789 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Imielinski, M., Guo, G. & Meyerson, M. Insertions and deletions target lineage-defining genes in human cancers. Cell 168, 460–472 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shinde, J. et al. Palimpsest: an R package for studying mutational and structural variant signatures along clonal evolution in cancer. Bioinformatics 34, 3380–3381 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pham, P., Bransteitter, R., Petruska, J. & Goodman, M. F. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424, 103–107 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Balinas-Gavira, C. et al. Frequent mutations in the amino-terminal domain of BCL7A impair its tumor suppressor role in DLBCL. Leukemia 34, 2722–2735 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mottok, A. et al. Genomic alterations in CIITA are frequent in primary mediastinal large B cell lymphoma and are associated with diminished MHC class II expression. Cell Rep. 13, 1418–1431 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kuhrt, D. & Wojchowski, D. M. Emerging EPO and EPO receptor regulators and signal transducers. Blood 125, 3536–3541 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Basso, K. & Dalla-Favera, R. Roles of BCL6 in normal and transformed germinal center B cells. Immunol. Rev. 247, 172–183 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Hilton, L. K. et al. The double-hit signature identifies double-hit diffuse large B-cell lymphoma with genetic events cryptic to FISH. Blood 134, 1528–1532 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607–620 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mandelbaum, J. et al. BLIMP1 is a tumor suppressor gene frequently disrupted in activated B cell-like diffuse large B cell lymphoma. Cancer Cell 18, 568–579 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Parekh, S. et al. BCL6 programs lymphoma cells for survival and differentiation through distinct biochemical mechanisms. Blood 110, 2067–2074 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shaffer, A. L. et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17, 51–62 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Saito, M. et al. BCL6 suppression of BCL2 via Miz1 and its disruption in diffuse large B cell lymphoma. Proc. Natl Acad. Sci. USA 106, 11294–11299 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, M. et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature 451, 841–845 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Weikum, E. R., Knuesel, M. T., Ortlund, E. A. & Yamamoto, K. R. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat. Rev. Mol. Cell Biol. 18, 159–174 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Xiao, H. et al. Haploinsufficiency of NR3C1 drives glucocorticoid resistance in adult acute lymphoblastic leukemia cells by down-regulating the mitochondrial apoptosis axis, and is sensitive to Bcl-2 blockage. Cancer Cell Int. 19, 218 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Allen, C. D. et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol. 5, 943–952 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kaiser, L. M., Hunter, Z. R., Treon, S. P. & Buske, C. CXCR4 in Waldenstrom’s macroglobulinema: chances and challenges. Leukemia 35, 333–345 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl Acad. Sci. USA 95, 11816–11821 (1998).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shen, H. M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280, 1750–1752 (1998).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shen, J. C. et al. A high-resolution landscape of mutations in the BCL6 super-enhancer in normal human B cells. Proc. Natl Acad. Sci. USA 116, 24779–24785 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gamberi, B. et al. Microsatellite instability is rare in B-cell non-Hodgkin’s lymphomas. Blood 89, 975–979 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • de Miranda, N. F. et al. DNA repair genes are selectively mutated in diffuse large B cell lymphomas. J. Exp. Med. 210, 1729–1742 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Cattoretti, G. et al. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 7, 445–455 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Batmanov, K., Wang, W., Bjoras, M., Delabie, J. & Wang, J. Integrative whole-genome sequence analysis reveals roles of regulatory mutations in BCL6 and BCL2 in follicular lymphoma. Sci. Rep. 7, 7040 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Morin, R. D. et al. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood 122, 1256–1265 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature 459, 717–721 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grande, B. M. et al. Genome-wide discovery of somatic coding and noncoding mutations in pediatric endemic and sporadic Burkitt lymphoma. Blood 133, 1313–1324 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Puente, X. S. et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526, 519–524 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010)

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods 15, 591–594 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Favero, F. et al. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data. Ann. Oncol. 26, 64–70 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wala, J. A. et al. SvABA: genome-wide detection of structural variants and indels by local assembly. Genome Res. 28, 581–591 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Quinlan, A. R. BEDTools: the Swiss-Army tool for genome feature analysis. Curr. Protoc. Bioinformatics 47, 11.12.1–11.12.34 (2014).

    Google Scholar 

  • Zhang, J. et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat. Med. 21, 1190–1198 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang, J. et al. The CREBBP acetyltransferase is a haploinsufficient tumor suppressor in B-cell lymphoma. Cancer Discov. 7, 322–337 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Giannopoulou, E. G. & Elemento, O. An integrated ChIP-seq analysis platform with customizable workflows. BMC Bioinformatics 12, 277 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE blacklist: identification of problematic regions of the genome. Sci. Rep. 9, 9354 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bunting, K. L. et al. Multi-tiered reorganization of the genome during B cell affinity maturation anchored by a germinal center-specific locus control region. Immunity 45, 497–512 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. Nucleic Acids Res. 43, W39–W49 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jolma, A. et al. DNA-binding specificities of human transcription factors. Cell 152, 327–339 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Meyer, S. N. et al. Unique and shared epigenetic programs of the CREBBP and EP300 acetyltransferases in germinal center B cells reveal targetable dependencies in lymphoma. Immunity 51, 535–547 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bereshchenko, O. R., Gu, W. & Dalla-Favera, R. Acetylation inactivates the transcriptional repressor BCL6. Nat. Genet. 32, 606–613 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pasqualucci, L. et al. Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood 101, 2914–2923 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Unnikrishnan, A. et al. A quantitative proteomics approach identifies ETV6 and IKZF1 as new regulators of an ERG-driven transcriptional network. Nucleic Acids Res. 44, 10644–10661 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856–2860 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Meier, F. et al. Online parallel accumulation serial fragmentation (PASEF) with a novel trapped on mobility mass spectrometer. Mol. Cell. Proteom. 17, 2534–2545 (2018).

    CAS 
    Article 

    Google Scholar 

  • Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res.10, 1794–1805 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *