Strange IndiaStrange India


  • 1.

    Bindoff, N. L. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) Ch. 5 (IPCC, 2019).

  • 2.

    Frankignoul, C. & Hasselmann, K. Stochastic climate models, part II application to sea-surface temperature anomalies and thermocline variability. Tellus 29, 289–305 (1977).

    ADS 

    Google Scholar 

  • 3.

    Bopp, L., Lévy, M., Resplandy, L. & Sallée, J. Pathways of anthropogenic carbon subduction in the global ocean. Geophys. Res. Lett. 42, (2015).

  • 4.

    Sverdrup, H. U. On conditions for the vernal blooming of phytoplankton. ICES J. Mar. Sci. 18, 287–295 (1953).

    Google Scholar 

  • 5.

    Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Polovina, J. J., Howell, E. A. & Abecassis, M. Ocean’s least productive waters are expanding. Geophys. Res. Lett. 35, L03618 (2008).

    ADS 

    Google Scholar 

  • 8.

    Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Chang. 10, 1116–1123 (2020).

    ADS 

    Google Scholar 

  • 9.

    Yamaguchi, R. & Suga, T. Trend and variability in global upper-ocean stratification since the 1960s. J. Geophys. Res. Oceans 124, 8933–8948 (2019).

    ADS 

    Google Scholar 

  • 10.

    Young, I. R. & Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 364, 548–552 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Young, I. R., Zieger, S. & Babanin, A. V. Global trends in wind speed and wave height. Science 332, 451–455 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Sprintall, J. & Tomczak, M. Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res. Oceans 97, 7305–7316 (1992).

    ADS 

    Google Scholar 

  • 13.

    Kataoka, T., Kimoto, M., Watanabe, M. & Tatebe, H. Wind–mixed layer–SST feedbacks in a tropical air–sea coupled system: application to the Atlantic. J. Clim. 32, 3865–3881 (2019).

    ADS 

    Google Scholar 

  • 14.

    Sallée, J. B., Matear, R., Rintoul, S. R. & Lenton, A. Localised subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nat. Geosci. 5, 579–584 (2012).

    ADS 

    Google Scholar 

  • 15.

    Llort, J., Lévy, M., Sallée, J. B. & Tagliabue, A. Nonmonotonic response of primary production and export to changes in mixed-layer depth in the Southern Ocean. Geophys. Res. Lett. 46, 3368–3377 (2019).

    ADS 

    Google Scholar 

  • 16.

    Pörtner, H.-O. et al. Summary for policymakers. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (IPCC, 2019).

  • 17.

    Somavilla, R., González-Pola, C. & Fernández-Diaz, J. The warmer the ocean surface, the shallower the mixed layer. How much of this is true? J. Geophys. Res. Oceans 122, 7698–7716 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N. & Scott, J. D. Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res. Oceans 117, C04031 (2012).

    ADS 

    Google Scholar 

  • 19.

    Helm, K. P., Bindoff, N. L. & Church, J. A. Observed decreases in oxygen content of the global ocean. Geophys. Res. Lett. 38, L23602 (2011).

    ADS 

    Google Scholar 

  • 20.

    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 21.

    Pellichero, V., Sallée, J.-B., Schmidtko, S., Roquet, F. & Charrassin, J.-B. The ocean mixed layer under Southern Ocean sea-ice: seasonal cycle and forcing. J. Geophys. Res. Oceans 122, 1608–1633 (2017).

    ADS 

    Google Scholar 

  • 22.

    Treasure, A. M. et al. Marine mammals exploring the oceans pole to pole: a review of the MEOP consortium. Oceanography 30, 132–138 (2017).

    Google Scholar 

  • 23.

    Schmidtko, S., Johnson, G. C. & Lyman, J. M. MIMOC: a global monthly isopycnal upper-ocean climatology with mixed layers. J. Geophys. Res. Oceans 118, 1658–1672 (2013).

    ADS 

    Google Scholar 

  • 24.

    Schmidtko, S., Heywood, K. J., Thompson, A. F. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Kuusela, M. & Stein, M. L. Locally stationary spatio-temporal interpolation of argo profiling float data. Proc. R. Soc. Lond. A 474, 20180400 (2018).

    ADS 

    Google Scholar 

  • 27.

    Buckingham, C. E. et al. The contribution of surface and submesoscale processes to turbulence in the open ocean surface boundary layer. J. Adv. Model. Earth Syst. 11, 4066–4094 (2019).

    ADS 

    Google Scholar 

  • 28.

    de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A. & Iudicone, D. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys. Res. 109, C12003 (2004).

    ADS 

    Google Scholar 

  • 29.

    Sallée, J. B., Speer, K. G. & Rintoul, S. R. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode. Nat. Geosci. 3, 273–279 (2010).

    ADS 

    Google Scholar 

  • 30.

    Holte, J., Talley, L. D., Gilson, J. & Roemmich, D. An Argo mixed layer climatology and database. Geophys. Res. Lett. 44, 5618–5626 (2017).

    ADS 

    Google Scholar 

  • 31.

    Rhein, M. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC (eds Stocker, T. F. et al.) 255–316 (Cambridge Univ. Press, 2013).

  • 32.

    Durack, P. J. & Wijffels, S. E. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Clim. 23, 4342–4362 (2010).

    ADS 

    Google Scholar 

  • 33.

    Durack, P. J., Wijffels, S. E. & Matear, R. J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455–458 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC (eds Stocker, T. F. et al.) 867–952 (Cambridge Univ. Press, 2013).

  • 35.

    Armour, K. C., Marshall, J., Scott, J. R., Donohoe, A. & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9, 549–554 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 36.

    Marshall, J. et al. The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Clim. Dyn. 44, 2287–2299 (2015).

    Google Scholar 

  • 37.

    Belcher, S. E. et al. A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett. 39, L18605 (2012).

    ADS 

    Google Scholar 

  • 38.

    Barkan, R., Winters, K. B. & McWilliams, J. C. Stimulated imbalance and the enhancement of eddy kinetic energy dissipation by internal waves. J. Phys. Oceanogr. 47, 181–198 (2017).

    ADS 

    Google Scholar 

  • 39.

    Hu, S. et al. Deep-reaching acceleration of global mean ocean circulation over the past two decades. Sci. Adv. 6, eaax7727 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Siegelman, L. et al. Enhanced upward heat transport at deep submesoscale ocean fronts. Nat. Geosci. 13, 50–55 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 41.

    Su, Z., Wang, J., Klein, P., Thompson, A. F. & Menemenlis, D. Ocean submesoscales as a key component of the global heat budget. Nat. Commun. 9, 775 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Gill, A. E. & Niiler, P. P. The theory of the seasonal variability in the ocean. Deep-Sea Res. Oceanogr. Abstr. 20, 141–178 (1973).

    ADS 

    Google Scholar 

  • 43.

    Oschlies, A., Brandt, P., Stramma, L. & Schmidtko, S. Drivers and mechanisms of ocean deoxygenation. Nat. Geosci. 11, 467–473 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 44.

    Killworth, P. D., Chelton, D. B. & de Szoeke, R. A. The speed of observed and theoretical long extratropical planetary waves. J. Phys. Oceanogr. 27, 1946–1966 (1997).

    ADS 

    Google Scholar 

  • 45.

    Durack, P. J., Wijffels, S. E. & Boyer, T. P. in Ocean Circulation and Climate Vol. 103 (eds. Siedler, G. et al.) Ch. 28, 727–757 (Academic Press, 2013).

  • 46.

    Mantyla, A. W. The treatment of inconsistencies in Atlantic deep water salinity data. Deep Sea Res. Part I 41, 1387–1405 (1994).

    Google Scholar 

  • 47.

    Sloyan, B. M. et al. The global ocean ship-based hydrographic investigations program (GO-SHIP): a platform for integrated multidisciplinary ocean science. Front. Mar. Sci. 6, 445 (2019).

    Google Scholar 

  • 48.

    Riser, S. C. et al. Fifteen years of ocean observations with the global Argo array. Nat. Clim. Chang. 6, 145–153 (2016).

    ADS 

    Google Scholar 

  • 49.

    Roemmich, D. et al. On the future of argo: a global, full-depth, multi-disciplinary array. Front. Mar. Sci. 6, 439 (2019).

    Google Scholar 

  • 50.

    Roquet, F. et al. A Southern Indian Ocean database of hydrographic profiles obtained with instrumented elephant seals. Sci. Data 1, 140028 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Durack, P. J., Gleckler, P. J., Landerer, F. W. & Taylor, K. E. Quantifying underestimates of long-term upper-ocean warming. Nat. Clim. Chang. 4, 999–1005 (2014).

    ADS 

    Google Scholar 

  • 52.

    Brainerd, K. E. & Gregg, M. C. Surface mixed and mixing layer depths. Deep Sea Res. Part I 42, 1521–1543 (1995).

    Google Scholar 

  • 53.

    Thomson, R. E. & Fine, I. V. Estimating mixed layer depth from oceanic profile data. J. Atmos. Ocean. Technol. 20, 319–329 (2003).

    ADS 

    Google Scholar 

  • 54.

    Holte, J. & Talley, L. A new algorithm for finding mixed layer depths with applications to Argo data and subantarctic mode water formation. J. Atmos. Ocean. Technol. 26, 1920–1939 (2009).

    ADS 

    Google Scholar 

  • 55.

    Sallée, J. B., Wienders, N., Speer, K. & Morrow, R. Formation of subantarctic mode water in the southeastern Indian Ocean. Ocean Dyn. 56, 525–542 (2006).

    ADS 

    Google Scholar 

  • 56.

    Pedlosky, J. Geophysical Fluid Dynamics (Springer, 1987).

  • 57.

    Jakobsen, P. K., Ribergaard, M. H., Quadfasel, D., Schmith, T. & Hughes, C. W. Near-surface circulation in the northern North Atlantic as inferred from Lagrangian drifters: variability from the mesoscale to interannual. J. Geophys. Res. Oceans 108, 3251 (2003).

    ADS 

    Google Scholar 

  • 58.

    Lacasce, J. H. Floats and f/H. J. Mar. Res. 58, 61–95 (2000).

    Google Scholar 

  • 59.

    Dijkstra, E. W. et al. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959).

    MathSciNet 
    MATH 

    Google Scholar 

  • 60.

    Roquet, F. et al. Delayed-mode calibration of hydrographic data obtained from animal-borne satellite relay data loggers. J. Atmos. Ocean. Technol. 28, 787–801 (2011).

    ADS 

    Google Scholar 

  • 61.

    Boehme, L. et al. Animal-borne CTD-satellite relay data loggers for real-time oceanographic data collection. Ocean Sci. 5, 685–695 (2009).

    ADS 

    Google Scholar 

  • 62.

    Kennedy, J., Rayner, N., Atkinson, C. & Killick, R. An ensemble data set of sea surface temperature change from 1850: the Met Office Hadley Centre HadSST. 4.0. 0.0 data set. J. Geophys. Res. Atmos. 124, 7719–7763 (2019).

    ADS 

    Google Scholar 

  • 63.

    Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 8, 165–176 (2016).

    ADS 

    Google Scholar 

  • 64.

    Sutherland, P. & Melville, W. K. Field measurements of surface and near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr. 45, 943–965 (2015).

    ADS 

    Google Scholar 

  • 65.

    Sullivan, P. P., McWilliams, J. C. & Melville, W. K. Surface gravity wave effects in the oceanic boundary layer: large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech. 593, 405–452 (2007).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • 66.

    Li, M., Zahariev, K. & Garrett, C. Role of Langmuir circulation in the deepening of the ocean surface mixed layer. Science 270, 1955–1957 (1995).

    ADS 
    CAS 

    Google Scholar 

  • 67.

    Li, M. & Garrett, C. Mixed layer deepening due to Langmuir circulation. J. Phys. Oceanogr. 27, 121–132 (1997).

    ADS 

    Google Scholar 

  • 68.

    Edson, J. B. et al. On the exchange of momentum over the open ocean. J. Phys. Oceanogr. 43, 1589–1610 (2013).

    ADS 

    Google Scholar 

  • 69.

    Tokinaga, H. & Xie, S.-P. Wave- and anemometer-based sea surface wind (waswind) for climate change analysis. J. Clim. 24, 267–285 (2011).

    ADS 

    Google Scholar 

  • 70.

    Ozmidov, R. On the turbulent exchange in a stably stratified ocean. Atmos. Oceanic Phys. 1, 493–497 (1965).

    Google Scholar 

  • 71.

    Riley, J. J. & Lelong, M.-P. Fluid motions in the presence of strong stable stratification. Annu. Rev. Fluid Mech. 32, 613–657 (2000).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • 72.

    Klein, P. & Lapeyre, G. The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mar. Sci. 1, 351–375 (2009).

    ADS 

    Google Scholar 

  • 73.

    Lapeyre, G., Klein, P. & Hua, B. L. Oceanic restratification forced by surface frontogenesis. J. Phys. Oceanogr. 36, 1577–1590 (2006).

    ADS 

    Google Scholar 

  • 74.

    Thomas, L. N. Destruction of potential vorticity by winds. J. Phys. Oceanogr. 35, 2457–2466 (2005).

    ADS 
    MathSciNet 

    Google Scholar 

  • 75.

    Thomas, L. N. & Lee, C. M. Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr. 35, 1086–1102 (2005).

    ADS 

    Google Scholar 

  • 76.

    D’Asaro, E., Lee, C., Rainville, L., Harcourt, R. & Thomas, L. Enhanced turbulence and energy dissipation at ocean fronts. Science 332, 318–322 (2011).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Tandon, A. & Garrett, C. Mixed layer restratification due to a horizontal density gradient. J. Phys. Oceanogr. 24, 1419–1424 (1994).

    ADS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *