Strange India All Strange Things About India and world


  • 1.

    Taylor, K. G. & Paessler, S. Pathogenesis of Venezuelan equine encephalitis. Vet. Microbiol. 167, 145–150 (2013).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Ma, H. et al. LDLRAD3 is a receptor for Venezuelan equine encephalitis virus. Nature 588, 308–314 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Strauss, J. H. & Strauss, E. G. The alphaviruses: gene expression, replication, and evolution. Microbiol. Rev. 58, 491–562 (1994).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Suhrbier, A., Jaffar-Bandjee, M. C. & Gasque, P. Arthritogenic alphaviruses—an overview. Nat. Rev. Rheumatol. 8, 420–429 (2012).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Carossino, M., Thiry, E., de la Grandière, A. & Barrandeguy, M. E. Novel vaccination approaches against equine alphavirus encephalitides. Vaccine 32, 311–319 (2014).

    Article 

    Google Scholar 

  • 6.

    Zacks, M. A. & Paessler, S. Encephalitic alphaviruses. Vet. Microbiol. 140, 281–286 (2010).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Sharma, A. & Knollmann-Ritschel, B. Current understanding of the molecular basis of Venezuelan equine encephalitis virus pathogenesis and vaccine development. Viruses 11, 164 (2019).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Bronze, M. S., Huycke, M. M., Machado, L. J., Voskuhl, G. W. & Greenfield, R. A. Viral agents as biological weapons and agents of bioterrorism. Am. J. Med. Sci. 323, 316–325 (2002).

    Article 

    Google Scholar 

  • 9.

    Lescar, J. et al. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 105, 137–148 (2001).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Li, L., Jose, J., Xiang, Y., Kuhn, R. J. & Rossmann, M. G. Structural changes of envelope proteins during alphavirus fusion. Nature 468, 705–708 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Roussel, A. et al. Structure and interactions at the viral surface of the envelope protein E1 of Semliki Forest virus. Structure 14, 75–86 (2006).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Voss, J. E. et al. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 468, 709–712 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Chen, L. et al. Implication for alphavirus host-cell entry and assembly indicated by a 3.5 Å resolution cryo-EM structure. Nat. Commun. 9, 5326 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Cheng, R. H. et al. Nucleocapsid and glycoprotein organization in an enveloped virus. Cell 80, 621–630 (1995).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Hasan, S. S. et al. Cryo-EM structures of eastern equine encephalitis virus reveal mechanisms of virus disassembly and antibody neutralization. Cell Rep. 25, 3136–3147 (2018).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Kostyuchenko, V. A. et al. The structure of Barmah Forest virus as revealed by cryo-electron microscopy at a 6-angstrom resolution has detailed transmembrane protein architecture and interactions. J. Virol. 85, 9327–9333 (2011).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Pletnev, S. V. et al. Locations of carbohydrate sites on alphavirus glycoproteins show that E1 forms an icosahedral scaffold. Cell 105, 127–136 (2001).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Zhang, R. et al. 4.4 Å cryo-EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus. EMBO J. 30, 3854–3863 (2011).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Sun, S. et al. Structural analyses at pseudo atomic resolution of Chikungunya virus and antibodies show mechanisms of neutralization. Elife 2, e00435 (2013).

    Article 

    Google Scholar 

  • 20.

    Zhang, W. et al. Aura virus structure suggests that the T=4 organization is a fundamental property of viral structural proteins. J. Virol. 76, 7239–7246 (2002).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Jose, J., Snyder, J. E. & Kuhn, R. J. A structural and functional perspective of alphavirus replication and assembly. Future Microbiol. 4, 837–856 (2009).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Holmes, A. C., Basore, K., Fremont, D. H. & Diamond, M. S. A molecular understanding of alphavirus entry. PLoS Pathog. 16, e1008876 (2020).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Vancini, R., Hernandez, R. & Brown, D. Alphavirus entry into host cells. Prog. Mol. Biol. Transl. Sci. 129, 33–62 (2015).

    Article 

    Google Scholar 

  • 24.

    Zhang, R. et al. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature 557, 570–574 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Basore, K. et al. Cryo-EM structure of chikungunya virus in complex with the Mxra8 receptor. Cell 177, 1725–1737 (2019).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Song, H. et al. Molecular basis of arthritogenic alphavirus receptor MXRA8 binding to chikungunya virus envelope protein. Cell 177, 1714–1724 (2019).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Fass, D., Blacklow, S., Kim, P. S. & Berger, J. M. Molecular basis of familial hypercholesterolaemia from structure of LDL receptor module. Nature 388, 691–693 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 28.

    Ivanova, L. & Schlesinger, M. J. Site-directed mutations in the Sindbis virus E2 glycoprotein identify palmitoylation sites and affect virus budding. J. Virol. 67, 2546–2551 (1993).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Ko, S. Y. et al. A virus-like particle vaccine prevents equine encephalitis virus infection in nonhuman primates. Sci. Transl. Med. 11, eaav3113 (2019).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Jiang, L. et al. Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein. Sci. Transl. Med. 6, 234ra259 (2014).

    Article 

    Google Scholar 

  • 31.

    Wu, C., Huang, X., Cheng, J., Zhu, D. & Zhang, X. High-quality, high-throughput cryo-electron microscopy data collection via beam tilt and astigmatism-free beam-image shift. J. Struct. Biol. 208, 107396 (2019).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    Article 

    Google Scholar 

  • 34.

    Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).

    Article 

    Google Scholar 

  • 35.

    Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    CAS 
    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published.