Strange IndiaStrange India


  • 1.

    Wang, Y. et al. A stable silicon(0) compound with a Si=Si double bond. Science 321, 1069–1071 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Sidiropoulos, A., Jones, C., Stasch, A., Klein, S. & Frenking, G. N-Heterocyclic carbene stabilized digermanium(0). Angew. Chem. Int. Edn 48, 9701–9704 (2009).

    CAS 

    Google Scholar 

  • 3.

    Braunschweig, H. et al. Ambient-temperature isolation of a compound with a boron-boron triple bond. Science 336, 1420–1422 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Jones, C., Sidiropoulos, A., Holzmann, N., Frenking, G. & Stasch, A. An N-heterocyclic carbene adduct of diatomic tin, :Sn=Sn:. Chem. Commun. 48, 9855–9857 (2012).

    CAS 

    Google Scholar 

  • 5.

    Mondal, K. C. et al. A stable singlet biradicaloid siladicarbene: (L:)2Si. Angew. Chem. Int. Edn 52, 2963–2967 (2013).

    CAS 

    Google Scholar 

  • 6.

    Li, Y. et al. Acyclic germylones: congeners of allenes with a central germanium atom. J. Am. Chem. Soc. 135, 12422–12428 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Glaunsinger, W. S. et al. Structure and molecular motions in alkaline earth hexammines. Nature 271, 414–417 (1978).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Wu, X. et al. Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals. Science 361, 912–916 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Wang, Q. et al. Transition-metal chemistry of alkaline-earth elements: the trisbenzene complexes M(Bz)3 (M=Sr, Ba). Angew. Chem. Int. Edn 58, 17365–17374 (2019).

    CAS 

    Google Scholar 

  • 10.

    Arrowsmith, M. et al. Neutral zero-valent s-block complexes with strong multiple bonding. Nat. Chem. 8, 890–894 (2016).

    CAS 

    Google Scholar 

  • 11.

    Couchman, S. A., Holzmann, N., Frenking, G., Wilson, D. J. D. & Dutton, J. L. Beryllium chemistry the safe way: a theoretical evaluation of low oxidation state beryllium compounds. Dalton Trans. 42, 11375–11384 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Green, S. P., Jones, C. & Stasch, A. Stable magnesium(I) compounds with Mg–Mg bonds. Science 318, 1754–1757 (2007).

    ADS 
    CAS 

    Google Scholar 

  • 13.

    Jones, C. Dimeric magnesium(I) β-diketiminates: a new class of quasi-universal reducing agent. Nat. Rev. Chem. 1, 0059 (2017).

    CAS 

    Google Scholar 

  • 14.

    Jones, C. Open questions in low oxidation state group 2 chemistry. Commun. Chem. 3, 159 (2020).

    Google Scholar 

  • 15.

    Gentner, T. X. et al. Low valent magnesium chemistry with a super bulky β‐diketiminate ligand. Angew. Chem. Int. Edn 58, 607–611 (2019).

    CAS 

    Google Scholar 

  • 16.

    Jones, D. D. L., Douair, I., Maron, L. & Jones, C. Photochemically activated dimagnesium(I) compounds: reagents for the reduction and selective C–H bond activation of inert arenes. Angew. Chem. Int. Edn 60, 7087–7092 (2021).

  • 17.

    Rösch, B. et al. Mg-Mg bond polarization induced by a superbulky β-diketiminate ligand. Chem. Commun. 56, 11402–11405 (2020).

    Google Scholar 

  • 18.

    Hicks, J., Juckel, M., Paparo, A., Dange, D. & Jones, C. Multigram syntheses of magnesium(I) compounds using alkali metal halide supported alkali metals as dispersible reducing agents. Organometallics 37, 4810–4813 (2018).

    CAS 

    Google Scholar 

  • 19.

    Cui, C. et al. Synthesis and structure of a monomeric aluminum(I) compound [{HC(CMeNAr)2}Al] (Ar=2,6-iPr2C6H3): a stable aluminum analogue of a carbene. Angew. Chem. Int. Edn 39, 4274–4276 (2000).

    CAS 

    Google Scholar 

  • 20.

    Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion. Nature 557, 92–95 (2018); correction 560, E24 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Dye, J. L., Ceraso, J. M., Lok Tak, M., Barnett, B. L. & Tehan, F. J. Crystalline salt of the sodium anion (Na). J. Am. Chem. Soc. 96, 608–609 (1974).

    CAS 

    Google Scholar 

  • 22.

    Camp, C. & Arnold, J. On the non-innocence of “NacNacs”: ligand-based reactivity in β-diketiminate supported coordination compounds. Dalton Trans. 45, 14462–14498 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Slater, J. C. Atomic radii in crystals. J. Chem. Phys. 41, 3199–3204 (1964).

    ADS 
    CAS 

    Google Scholar 

  • 24.

    Lambert, C. & von Ragué Schleyer, P. Are polar organometallic compounds “carbanions”? The gegenion effect on structure and energies of alkali-metal compounds. Angew. Chem. Int. Edn Engl. 33, 1129–1140 (1994).

    Google Scholar 

  • 25.

    Cao, W. L., Gatti, C., MacDougall, P. J. & Bader, R. F. W. On the presence of non-nuclear attractors in the charge distributions of Li and Na clusters. Chem. Phys. Lett. 141, 380–385 (1987).

    ADS 
    CAS 

    Google Scholar 

  • 26.

    Gentner, T. X. & Mulvey, R. E. Alkali metal mediation: diversity of applications in main group organometallic chemistry. Angew. Chem. Int. Edn 59, 2–18 (2020).

    Google Scholar 

  • 27.

    Arrowsmith, M. et al. Mononuclear three-coordinate magnesium complexes of a highly sterically encumbered β-diketiminate ligand. Inorg. Chem. 53, 10543–10552 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Bakewell, C., White, A. J. P. & Crimmin, M. R. Addition of carbon-fluorine bonds to a Mg(I)-Mg(I) bond: an equivalent of Grignard formation in solution. J. Am. Chem. Soc. 138, 12763–12766 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Hicks, J., Underhill, E. J., Kefalidis, C. E., Maron, L. & Jones, C. A mixed-valence tri-zinc complex, [LZnZnZnL] (L=bulky amide), bearing a linear chain of two-coordinate zinc atoms. Angew. Chem. Int. Edn 54, 10000–10004 (2015).

    CAS 

    Google Scholar 

  • 30.

    Bakewell, C., Ward, B. J., White, A. J. P. & Crimmin, M. R. A combined experimental and computational study on the reaction of fluoroarenes with Mg-Mg, Mg-Zn, Mg-Al and Al-Zn bonds. Chem. Sci. 9, 2348–2356 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Platts, J. A., Overgaard, J., Jones, C., Iversen, B. B. & Stasch, A. First experimental characterization of a non-nuclear attractor in a dimeric magnesium(I) compound. J. Phys. Chem. A 115, 194–200 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Garst, G. F. & Ungvary, F. in Grignard Reagents: New Developments (ed. Richey, H.) 185–276 (Wiley, 2000).

  • 33.

    Tjurina, L. A. et al. Synthesis of cluster alkyl and aryl Grignard reagents in solution. Organometallics 23, 1349–1351 (2004).

    CAS 

    Google Scholar 

  • 34.

    Imizu, Y. & Klabunde, K. J. Metal cluster vs. atom reactivities: magnesium cluster Grignard reagents. Inorg. Chem. 23, 3602–3605 (1984).

    CAS 

    Google Scholar 

  • 35.

    Köhn, A., Weigend, F. & Ahlrichs, R. Theoretical study on clusters of magnesium. Phys. Chem. Chem. Phys. 3, 711–719 (2001).

    Google Scholar 

  • 36.

    Eriksson, L. A. Accurate density functional theory study of cationic magnesium clusters and Mg+-rare gas interactions. J. Chem. Phys. 103, 1050–1056 (1995).

    ADS 
    CAS 

    Google Scholar 

  • 37.

    Kruczyński, T., Henke, F., Neumaier, M., Bowen, K. H. & Schnöckel, H. Many Mg-Mg bonds form the core of the Mg16Cp*8Br4K cluster anion: the key to a reassessment of the Grignard reagent (GR) formation process? Chem. Sci. 7, 1543–1547 (2016).

    PubMed 

    Google Scholar 

  • 38.

    Velazquez, A., Fernández, I., Frenking, G. & Merino, G. Multimetallocenes. A theoretical study. Organometallics 26, 4731–4736 (2007).

    CAS 

    Google Scholar 

  • 39.

    Chase, M. W. Jr NIST-JANAF Thermochemical Tables Part 2, 4th edn (Monograph No. 9, J. Phys. Chem. Ref. Data, American Institution of Physics, 1998).

  • 40.

    Clegg, W. et al. Synthesis and structures of [(trimethylsilyl)methyl]sodium and ‐potassium with bi‐ and tridentate N‐donor ligands. Eur. J. Inorg. Chem. 721–726 (2011).

  • 41.

    Rigaku Oxford Diffraction. CrysAlisPro Software system, version 1.171.40.67a (Rigaku Corporation, 2018).

  • 42.

    Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    CAS 

    Google Scholar 

  • 43.

    Sheldrick, G. M. SHELXT — Integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    MATH 

    Google Scholar 

  • 44.

    Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    MATH 

    Google Scholar 

  • 45.

    Frisch, M. J. et al. Gaussian 16 Rev. A.03 (Gaussian, Inc., 2016).

  • 46.

    Becke, A. D. A new mixing of Hartree–Fock and local density‐functional theories. J. Chem. Phys. 98, 1372–1377 (1993).

    ADS 
    CAS 

    Google Scholar 

  • 47.

    Perdew, J. P. Electronic Structure of Solids (Akademie, 1991).

  • 48.

    Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Reed, A. E., Weinstock, R. B. & Weinhold, F. Natural population analysis. J. Chem. Phys. 83, 735–746 (1985).

    ADS 
    CAS 

    Google Scholar 

  • 51.

    Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893–928 (1991).

    CAS 

    Google Scholar 

  • 52.

    Keith, T. A. AIMAll Version 17.01.25 (TK Gristmill Software, 2017).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *