Agterberg, D. F. et al. The physics of pair-density waves: cuprate superconductors and beyond. Annu. Rev. Condens. Matter Phys. 11, 231–270 (2020).
Google Scholar
Berg, E. et al. Dynamical layer decoupling in a stripe-ordered high-Tc superconductor. Phys. Rev. Lett. 99, 127003 (2007).
Google Scholar
Casalbuoni, R. & Nardulli, G. Inhomogeneous superconductivity in condensed matter and QCD. Rev. Mod. Phys. 76, 263 (2004).
Google Scholar
Lee, P. A. Amperean pairing and the pseudogap phase of cuprate superconductors. Phys. Rev. X. 4, 031017 (2014).
Google Scholar
Edkins, S. D. et al. Magnetic field-induced pair density wave state in the cuprate vortex halo. Science 364, 976–980 (2019).
Google Scholar
Radovan, H. A. et al. Magnetic enhancement of superconductivity from electron spin domains. Nature 425, 51–55 (2003).
Google Scholar
Gurevich, A. Iron-based superconductors at high magnetic fields. Rep. Prog. Phys. 74, 124501 (2011).
Google Scholar
Bergk, B. et al. Magnetic torque evidence for the Fulde–Ferrell–Larkin–Ovchinnikov state in the layered organic superconductor κ-(BEDT-TTF)2Cu(NCS)2. Phys. Rev. B 83, 064506 (2011).
Google Scholar
Du, Z. et al. Imaging the energy gap modulations of the cuprate pair-density-wave state. Nature 580, 65–70 (2020).
Google Scholar
Liu, X., Chong, Y. X., Sharma, R. & Davis, J. C. S. Discovery of a Cooper-pair density wave state in a transition-metal dichalcogenide. Science 372, 1447–1452 (2021).
Google Scholar
Chen, H. et al. Roton pair density wave and unconventional strong-coupling superconductivity in a topological kagome metal. Nature 599, 222–228 (2021).
Google Scholar
Kinjo, K. et al. Superconducting spin smecticity evidencing the Fulde–Ferrell–Larkin–Ovchinnikov state in Sr2RuO4. Science 376, 397–400 (2022).
Google Scholar
Li, Q., Hücker, M., Gu, G. D., Tsvelik, A. M. & Tranquada, J. M. Two-dimensional superconducting fluctuations in stripe-ordered La1.875Ba0.125CuO4. Phys. Rev. Lett. 99, 067001 (2007).
Google Scholar
Jiao, W.-H. et al. Iron-based magnetic superconductors AEuFe4As4 (A = Rb, Cs): natural superconductor-ferromagnet hybrids. J. Phys. Condens. Matter 34, 21 (2022).
Iida, K. et al. Coexisting spin resonance and long-range magnetic order of Eu in EuRb-Fe4As4. Phys. Rev. B 100, 014506 (2019).
Google Scholar
Fulde, P. & Ferrell, R. A. Superconductivity in a strong spin-exchange field. Phys. Rev. 135, A550 (1964).
Google Scholar
Larkin, A. I. & Ovchinnikov, Y. N. Nonuniform state of superconductors. Sov. Phys. JETP 20, 762–762 (1965).
Bianchi, A., Movshovich, R., Capan, C., Pagliuso, P. G. & Sarrao, J. L. Possible Fulde–Ferrell–Larkin–Ovchinnikov superconducting state in CeCoIn5. Phys. Rev. Lett. 91, 187004 (2003).
Google Scholar
Kenzelmann, M. et al. Coupled superconducting and magnetic order in CeCoIn5. Science 321, 1652–1654 (2008).
Google Scholar
Matsuda, Y. & Shimahara, H. Fulde–Ferrell–Larkin–Ovchinnikov State in heavy fermion superconductors. J. Phys. Soc. Jpn 76, 051005 (2007).
Google Scholar
Yonezawa, S. et al. Magnetic-field variations of the pair-breaking effects of superconductivity in (TMTSF)2ClO4. J. Phys. Soc. Jpn 77, 054712 (2008).
Google Scholar
Shimahara, H. in The Physics of Organic Superconductors and Conductors Springer Series in Materials Science Vol. 110 (ed. Lebed, A.) 687–704 (Springer, 2008).
Lortz, R. et al. Calorimetric evidence for a Fulde–Ferrell–Larkin–Ovchinnikov superconducting state in the layered organic superconductor κ-(BEDT-TTF) 2Cu(NCS)2. Phys. Rev. Lett. 99, 187002 (2007).
Google Scholar
Himeda, A., Kato, T. & Ogata, M. Stripe states with spatially oscillating d-wave superconductivity in the two-dimensional t–t′–J model. Phys. Rev. Lett. 88, 117001 (2002).
Google Scholar
Baruch, S. & Orgad, D. Spectral signatures of modulated d-wave superconducting phases. Phys. Rev. B 77, 174502 (2008).
Google Scholar
Ishida, S. et al. Superconductivity-driven ferromagnetism and spin manipulation using vortices in the magnetic superconductor EuRbFe4As4. Proc. Natl Acad. Sci. USA 118, e2101101118 (2021).
Google Scholar
Bao, J. K. et al. Single crystal growth and study of the ferromagnetic superconductor RbEuFe4As4. Cryst. Growth Des. 18, 3517–3523 (2018).
Google Scholar
Liu, X. et al. Evidence of nematic order and nodal superconducting gap along [110] direction in RbFe2As2. Nat. Commun. 10, 1039 (2019).
Google Scholar
Liu, Y. et al. Superconductivity and ferromagnetism in hole-doped EuRbFe4As4. Phys. Rev. B 93, 214503 (2016).
Google Scholar
Fujita, K. et al. Simultaneous transitions in cuprate momentum-space topology and electronic symmetry breaking. Science 344, 612–616 (2014).
Google Scholar
Zhao, H. et al. Cascade of correlated electron states in the kagome superconductor CsV3Sb5. Nature 599, 216–221 (2021).
Google Scholar
Smylie, M. P. et al. Anisotropic superconductivity and magnetism in single-crystal EuRbFe4As4. Phys. Rev. B 98, 104503 (2018).
Google Scholar
Kim, T. K. et al. Electronic structure and coexistence of superconductivity with magnetism in EuRbFe4As4. Phys. Rev. B 103, 174517 (2021).
Google Scholar
Liu, W. et al. A new Majorana platform in an Fe–As bilayer superconductor. Nat. Commun. 11, 5688 (2020).
Google Scholar
Watson, M. D. et al. Probing the reconstructed Fermi surface of antiferromagnetic BaFe2As2 in one domain. npj Quantum Mater. 4, 36 (2019).
Google Scholar
Miao, H. et al. Observation of strong electron pairing on bands without Fermi surfaces in LiFe1−xCoxAs. Nat. Commun. 6, 6056 (2015).
Google Scholar
Watson, M. D. et al. Three-dimensional electronic structure of the nematic and antiferromagnetic phases of NaFeAs from detwinned angle-resolved photoemission spectroscopy. Phys. Rev. B 97, 035134 (2018).
Buzdin, A. I. Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 77, 935–976 (2005).
Google Scholar