Strange India All Strange Things About India and world


  • Ran, S. et al. Nearly ferromagnetic spin-triplet superconductivity. Science 365, 684–687 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Robinson, J., Witt, J. & Blamire, M. Controlled injection of spin-triplet supercurrents into a strong ferromagnet. Science 329, 59–61 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Khaire, T. S., Khasawneh, M. A., Pratt, W. P. & Birge, N. O. Observation of spin-triplet superconductivity in co-based Josephson junctions. Phys. Rev. Lett. 104, 137002 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Sprungmann, D., Westerholt, K., Zabel, H., Weides, M. & Kohlstedt, H. Evidence for triplet superconductivity in Josephson junctions with barriers of the ferromagnetic Heusler alloy Cu2MnAl. Phys. Rev. B 82, 060505 (2010).

    Article 
    ADS 

    Google Scholar 

  • Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys.-Usp. 44, 131–136 (2001).

    Article 
    ADS 

    Google Scholar 

  • Sau, J. D. & Sarma, S. D. Realizing a robust practical Majorana chain in a quantum-dot–superconductor linear array. Nat. Commun. 3, 964 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Leijnse, M. & Flensberg, K. Parity qubits and poor man’s Majorana bound states in double quantum dots. Phys. Rev. B 86, 134528 (2012).

    Article 
    ADS 

    Google Scholar 

  • Beckmann, D., Weber, H. & Löhneysen, H. V. Evidence for crossed Andreev reflection in superconductor–ferromagnet hybrid structures. Phys. Rev. Lett. 93, 197003 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Russo, S., Kroug, M., Klapwijk, T. M. & Morpurgo, A. F. Experimental observation of bias-dependent nonlocal Andreev reflection. Phys. Rev. Lett. 95, 027002 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Recher, P., Sukhorukov, E. V. & Loss, D. Andreev tunneling, coulomb blockade, and resonant transport of nonlocal spin-entangled electrons. Phys. Rev. B 63, 165314 (2001).

    Article 
    ADS 

    Google Scholar 

  • Hofstetter, L., Csonka, S., Nygård, J. & Schönenberger, C. Cooper pair splitter realized in a two-quantum-dot Y-junction. Nature 461, 960–963 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Herrmann, L. G. et al. Carbon nanotubes as Cooper-pair beam splitters. Phys. Rev. Lett. 104, 026801 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Das, A. et al. High-efficiency Cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation. Nat. Commun. 3, 1165 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Schindele, J., Baumgartner, A. & Schönenberger, C. Near-unity Cooper pair splitting efficiency. Phys. Rev. Lett. 109, 157002 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tan, Z. B. et al. Cooper pair splitting by means of graphene quantum dots. Phys. Rev. Lett. 114, 096602 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Borzenets, I. et al. High efficiency CVD graphene–lead (Pb) Cooper pair splitter. Sci. Rep. 6, 23051 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Recher, P., Sukhorukov, E. V. & Loss, D. Quantum dot as spin filter and spin memory. Phys. Rev. Lett. 85, 1962–1965 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hanson, R. et al. Semiconductor few-electron quantum dot operated as a bipolar spin filter. Phys. Rev. B 70, 241304 (2004).

    Article 
    ADS 

    Google Scholar 

  • Gor’kov, L. P. & Rashba, E. I. Superconducting 2D system with lifted spin degeneracy: mixed singlet-triplet state. Phys. Rev. Lett. 87, 037004 (2001).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Annunziata, G., Manske, D. & Linder, J. Proximity effect with noncentrosymmetric superconductors. Phys. Rev. B 86, 174514 (2012).

    Article 
    ADS 

    Google Scholar 

  • Bergeret, F. S. & Tokatly, I. V. Spin–orbit coupling as a source of long-range triplet proximity effect in superconductor–ferromagnet hybrid structures. Phys. Rev. B 89, 134517 (2014).

    Article 
    ADS 

    Google Scholar 

  • Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).

    Article 
    CAS 

    Google Scholar 

  • Banerjee, N. et al. Controlling the superconducting transition by spin–orbit coupling. Phys. Rev. B 97, 184521 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jeon, K.-R. et al. Tunable pure spin supercurrents and the demonstration of their gateability in a spin-wave device. Phys. Rev. X 10, 031020 (2020).

    CAS 

    Google Scholar 

  • Cai, R. et al. Evidence for anisotropic spin-triplet Andreev reflection at the 2D van der Waals ferromagnet/superconductor interface. Nat. Commun. 12, 6725 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahmad, H. G. et al. Coexistence and tuning of spin-singlet and triplet transport in spin-filter Josephson junctions. Commun. Phys. 5, 2 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Phan, D. et al. Detecting induced p ± ip pairing at the Al–InAs interface with a quantum microwave circuit. Phys. Rev. Lett. 128, 107701 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kleine, A., Baumgartner, A., Trbovic, J. & Schönenberger, C. Contact resistance dependence of crossed Andreev reflection. Europhys. Lett. 87, 27011 (2009).

    Article 
    ADS 

    Google Scholar 

  • Heedt, S. et al. Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices. Nat. Commun. 12, 4914 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Danon, J. & Nazarov, Y. V. Pauli spin blockade in the presence of strong spin–orbit coupling. Phys. Rev. B 80, 041301 (2009).

    Article 
    ADS 

    Google Scholar 

  • Nadj-Perge, S. et al. Disentangling the effects of spin–orbit and hyperfine interactions on spin blockade. Phys. Rev. B 81, 201305 (2010).

    Article 
    ADS 

    Google Scholar 

  • Ono, K., Austing, D. G., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hofmann, A. et al. Anisotropy and suppression of spin–orbit interaction in a GaAs double quantum dot. Phys. Rev. Lett. 119, 176807 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nadj-Perge, S., Frolov, S. M., Bakkers, E. Pa. M. & Kouwenhoven, L. P. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, J.-Y. et al. Anisotropic Pauli spin-blockade effect and spin–orbit interaction field in an InAs nanowire double quantum dot. Nano Letters 18, 4741–4747 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Braunecker, B., Burset, P. & Levy Yeyati, A. Entanglement detection from conductance measurements in carbon nanotube Cooper pair splitters. Phys. Rev. Lett. 111, 136806 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Busz, P., Tomaszewski, D. & Martinek, J. Spin correlation and entanglement detection in Cooper pair splitters by current measurements using magnetic detectors. Phys. Rev. B 96, 064520 (2017).

    Article 
    ADS 

    Google Scholar 

  • Bordoloi, A., Zannier, V., Sorba, L., Schönenberger, C. & Baumgartner, A. Spin cross-correlation experiments in an electron entangler. Preprint at https://arxiv.org/abs/2203.07970 (2022).

  • Stano, P. & Fabian, J. Spin–orbit effects in single-electron states in coupled quantum dots. Phys. Rev. B 72, 155410 (2005).

    Article 
    ADS 

    Google Scholar 

  • Nadj-Perge, S. et al. Spectroscopy of spin–orbit quantum bits in indium antimonide nanowires. Phys. Rev. Lett. 108, 166801 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Alicea, J. Majorana fermions in a tunable semiconductor device. Phys. Rev. B 81, 125318 (2010).

    Article 
    ADS 

    Google Scholar 

  • Liu, C.-X., Wang, G., Dvir, T. & Wimmer, M. Tunable superconducting coupling of quantum dots via Andreev bound states. Preprint at https://arxiv.org/abs/2203.00107 (2022).

  • De Moor, M. W. et al. Electric field tunable superconductor–semiconductor coupling in Majorana nanowires. New J. Phys. 20, 103049 (2018).

    Article 
    ADS 

    Google Scholar 

  • Bommer, J. D. S. et al. Spin–orbit protection of induced superconductivity in Majorana nanowires. Phys. Rev. Lett. 122, 187702 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Dvir, T. et al. Realization of a minimal Kitaev chain in coupled quantum dots. Preprint at https://arxiv.org/abs/2206.08045 (2022).

  • Mazur, G. P. et al. Spin-mixing enhanced proximity effect in aluminum-based superconductor–semiconductor hybrids. Adv. Mater. 34, e2202034 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Borsoi, F. et al. Single-shot fabrication of semiconducting–superconducting nanowire devices. Adv. Func. Mater. 31, 2102388 (2021).

    Article 
    CAS 

    Google Scholar 

  • Fasth, C., Fuhrer, A., Samuelson, L., Golovach, V. N. & Loss, D. Direct measurement of the spin–orbit interaction in a two-electron InAs nanowire quantum dot. Phys. Rev. Lett. 98, 266801 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *