Ran, S. et al. Nearly ferromagnetic spin-triplet superconductivity. Science 365, 684–687 (2019).
Google Scholar
Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).
Google Scholar
Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).
Google Scholar
Robinson, J., Witt, J. & Blamire, M. Controlled injection of spin-triplet supercurrents into a strong ferromagnet. Science 329, 59–61 (2010).
Google Scholar
Khaire, T. S., Khasawneh, M. A., Pratt, W. P. & Birge, N. O. Observation of spin-triplet superconductivity in co-based Josephson junctions. Phys. Rev. Lett. 104, 137002 (2010).
Google Scholar
Sprungmann, D., Westerholt, K., Zabel, H., Weides, M. & Kohlstedt, H. Evidence for triplet superconductivity in Josephson junctions with barriers of the ferromagnetic Heusler alloy Cu2MnAl. Phys. Rev. B 82, 060505 (2010).
Google Scholar
Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys.-Usp. 44, 131–136 (2001).
Google Scholar
Sau, J. D. & Sarma, S. D. Realizing a robust practical Majorana chain in a quantum-dot–superconductor linear array. Nat. Commun. 3, 964 (2012).
Google Scholar
Leijnse, M. & Flensberg, K. Parity qubits and poor man’s Majorana bound states in double quantum dots. Phys. Rev. B 86, 134528 (2012).
Google Scholar
Beckmann, D., Weber, H. & Löhneysen, H. V. Evidence for crossed Andreev reflection in superconductor–ferromagnet hybrid structures. Phys. Rev. Lett. 93, 197003 (2004).
Google Scholar
Russo, S., Kroug, M., Klapwijk, T. M. & Morpurgo, A. F. Experimental observation of bias-dependent nonlocal Andreev reflection. Phys. Rev. Lett. 95, 027002 (2005).
Google Scholar
Recher, P., Sukhorukov, E. V. & Loss, D. Andreev tunneling, coulomb blockade, and resonant transport of nonlocal spin-entangled electrons. Phys. Rev. B 63, 165314 (2001).
Google Scholar
Hofstetter, L., Csonka, S., Nygård, J. & Schönenberger, C. Cooper pair splitter realized in a two-quantum-dot Y-junction. Nature 461, 960–963 (2009).
Google Scholar
Herrmann, L. G. et al. Carbon nanotubes as Cooper-pair beam splitters. Phys. Rev. Lett. 104, 026801 (2010).
Google Scholar
Das, A. et al. High-efficiency Cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation. Nat. Commun. 3, 1165 (2012).
Google Scholar
Schindele, J., Baumgartner, A. & Schönenberger, C. Near-unity Cooper pair splitting efficiency. Phys. Rev. Lett. 109, 157002 (2012).
Google Scholar
Tan, Z. B. et al. Cooper pair splitting by means of graphene quantum dots. Phys. Rev. Lett. 114, 096602 (2015).
Google Scholar
Borzenets, I. et al. High efficiency CVD graphene–lead (Pb) Cooper pair splitter. Sci. Rep. 6, 23051 (2016).
Google Scholar
Recher, P., Sukhorukov, E. V. & Loss, D. Quantum dot as spin filter and spin memory. Phys. Rev. Lett. 85, 1962–1965 (2000).
Google Scholar
Hanson, R. et al. Semiconductor few-electron quantum dot operated as a bipolar spin filter. Phys. Rev. B 70, 241304 (2004).
Google Scholar
Gor’kov, L. P. & Rashba, E. I. Superconducting 2D system with lifted spin degeneracy: mixed singlet-triplet state. Phys. Rev. Lett. 87, 037004 (2001).
Google Scholar
Annunziata, G., Manske, D. & Linder, J. Proximity effect with noncentrosymmetric superconductors. Phys. Rev. B 86, 174514 (2012).
Google Scholar
Bergeret, F. S. & Tokatly, I. V. Spin–orbit coupling as a source of long-range triplet proximity effect in superconductor–ferromagnet hybrid structures. Phys. Rev. B 89, 134517 (2014).
Google Scholar
Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).
Google Scholar
Banerjee, N. et al. Controlling the superconducting transition by spin–orbit coupling. Phys. Rev. B 97, 184521 (2018).
Google Scholar
Jeon, K.-R. et al. Tunable pure spin supercurrents and the demonstration of their gateability in a spin-wave device. Phys. Rev. X 10, 031020 (2020).
Google Scholar
Cai, R. et al. Evidence for anisotropic spin-triplet Andreev reflection at the 2D van der Waals ferromagnet/superconductor interface. Nat. Commun. 12, 6725 (2021).
Google Scholar
Ahmad, H. G. et al. Coexistence and tuning of spin-singlet and triplet transport in spin-filter Josephson junctions. Commun. Phys. 5, 2 (2022).
Google Scholar
Phan, D. et al. Detecting induced p ± ip pairing at the Al–InAs interface with a quantum microwave circuit. Phys. Rev. Lett. 128, 107701 (2022).
Google Scholar
Kleine, A., Baumgartner, A., Trbovic, J. & Schönenberger, C. Contact resistance dependence of crossed Andreev reflection. Europhys. Lett. 87, 27011 (2009).
Google Scholar
Heedt, S. et al. Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices. Nat. Commun. 12, 4914 (2021).
Google Scholar
Danon, J. & Nazarov, Y. V. Pauli spin blockade in the presence of strong spin–orbit coupling. Phys. Rev. B 80, 041301 (2009).
Google Scholar
Nadj-Perge, S. et al. Disentangling the effects of spin–orbit and hyperfine interactions on spin blockade. Phys. Rev. B 81, 201305 (2010).
Google Scholar
Ono, K., Austing, D. G., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).
Google Scholar
Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).
Google Scholar
Hofmann, A. et al. Anisotropy and suppression of spin–orbit interaction in a GaAs double quantum dot. Phys. Rev. Lett. 119, 176807 (2017).
Google Scholar
Nadj-Perge, S., Frolov, S. M., Bakkers, E. Pa. M. & Kouwenhoven, L. P. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).
Google Scholar
Wang, J.-Y. et al. Anisotropic Pauli spin-blockade effect and spin–orbit interaction field in an InAs nanowire double quantum dot. Nano Letters 18, 4741–4747 (2018).
Google Scholar
Braunecker, B., Burset, P. & Levy Yeyati, A. Entanglement detection from conductance measurements in carbon nanotube Cooper pair splitters. Phys. Rev. Lett. 111, 136806 (2013).
Google Scholar
Busz, P., Tomaszewski, D. & Martinek, J. Spin correlation and entanglement detection in Cooper pair splitters by current measurements using magnetic detectors. Phys. Rev. B 96, 064520 (2017).
Google Scholar
Bordoloi, A., Zannier, V., Sorba, L., Schönenberger, C. & Baumgartner, A. Spin cross-correlation experiments in an electron entangler. Preprint at https://arxiv.org/abs/2203.07970 (2022).
Stano, P. & Fabian, J. Spin–orbit effects in single-electron states in coupled quantum dots. Phys. Rev. B 72, 155410 (2005).
Google Scholar
Nadj-Perge, S. et al. Spectroscopy of spin–orbit quantum bits in indium antimonide nanowires. Phys. Rev. Lett. 108, 166801 (2012).
Google Scholar
Alicea, J. Majorana fermions in a tunable semiconductor device. Phys. Rev. B 81, 125318 (2010).
Google Scholar
Liu, C.-X., Wang, G., Dvir, T. & Wimmer, M. Tunable superconducting coupling of quantum dots via Andreev bound states. Preprint at https://arxiv.org/abs/2203.00107 (2022).
De Moor, M. W. et al. Electric field tunable superconductor–semiconductor coupling in Majorana nanowires. New J. Phys. 20, 103049 (2018).
Google Scholar
Bommer, J. D. S. et al. Spin–orbit protection of induced superconductivity in Majorana nanowires. Phys. Rev. Lett. 122, 187702 (2019).
Google Scholar
Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).
Google Scholar
Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).
Google Scholar
Dvir, T. et al. Realization of a minimal Kitaev chain in coupled quantum dots. Preprint at https://arxiv.org/abs/2206.08045 (2022).
Mazur, G. P. et al. Spin-mixing enhanced proximity effect in aluminum-based superconductor–semiconductor hybrids. Adv. Mater. 34, e2202034 (2022).
Google Scholar
Borsoi, F. et al. Single-shot fabrication of semiconducting–superconducting nanowire devices. Adv. Func. Mater. 31, 2102388 (2021).
Google Scholar
Fasth, C., Fuhrer, A., Samuelson, L., Golovach, V. N. & Loss, D. Direct measurement of the spin–orbit interaction in a two-electron InAs nanowire quantum dot. Phys. Rev. Lett. 98, 266801 (2007).
Google Scholar