Strange India All Strange Things About India and world


  • 1.

    Danovaro, R., Corinaldesi, C., Dell’Anno, A. & Snelgrove, P. V. R. The deep-sea under global change. Curr. Biol. 27, R461–R465 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Clarke, T. Robots in the deep. Nature 421, 468–470 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Yoerger, D. R., Jakuba, M., Bradley, A. M. & Bingham, B. Techniques for deep sea near bottom survey using an autonomous underwater vehicle. Int. J. Robot. Res. 26, 41–54 (2007).

    MATH 

    Google Scholar 

  • 4.

    Petersen, S. et al. News from the seabed—geological characteristics and resource potential of deep-sea mineral resources. Mar. Policy 70, 175–187 (2016).

    Google Scholar 

  • 5.

    Stachiw, J. D., Peters, D. & McDonald, G. Ceramic external pressure housings for deep sea vehicles. In IEEE Oceans Conf. https://doi.org/10.1109/OCEANS.2006.306971 (IEEE, 2006).

  • 6.

    Błachut, J. & Smith, P. Buckling of multi-segment underwater pressure hull. Ocean Eng. 35, 247–260 (2008).

    Google Scholar 

  • 7.

    Kampmann, P., Lemburg, J., Hanff, H. & Kirchner, F. Hybrid pressure-tolerant electronics. In IEEE Oceans Conf. https://doi.org/10.1109/OCEANS.2012.6404828 (IEEE, 2012).

  • 8.

    McPhail, S. D. Autosub6000: a deep diving long range AUV. J. Bionics Eng. 6, 55–62 (2009).

    Google Scholar 

  • 9.

    Umapathy, A. et al. Influence of deep-sea ambient conditions in the performance of pressure-compensated induction motors. Mar. Technol. Soc. J. 53, 67–73 (2019).

    Google Scholar 

  • 10.

    Bingham, N. Designing pressure-tolerant electronic systems. Unmanned Underwater Technology https://www.uutech.com/ptepaper/ (2013).

  • 11.

    Kunzig, R. Perceptions of science. Deep-sea biology: living with the endless frontier. Science 302, 991 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Danovaro, R. et al. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable. PLoS ONE 5, e11832 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Linley, T. D. et al. Fishes of the hadal zone including new species, in situ observations and depth records of Liparidae. Deep Sea Res. Part I 114, 99–110 (2016).

    Google Scholar 

  • 14.

    Yancey, P. H., Gerringer, M. E., Drazen, J. C., Rowden, A. A. & Jamieson, A. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proc. Natl Acad. Sci. USA 111, 4461–4465 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Wang, K. et al. Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation. Nat. Ecol. Evol. 3, 823–833 (2019).

    PubMed 

    Google Scholar 

  • 16.

    Hoving, H. J. T. & Haddock, S. H. D. The giant deep-sea octopus Haliphron atlanticus forages on gelatinous fauna. Sci. Rep. 7, 44952 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Kawabata, T. et al. Evaluation of the bioactivities of water-soluble extracts from twelve deep-sea jellyfish species. Fish. Sci. 79, 487–494 (2013).

    CAS 

    Google Scholar 

  • 18.

    Picardi, G. et al. Bioinspired underwater legged robot for seabed exploration with low environmental disturbance. Sci. Robot. 5, eaaz1012 (2020).

    PubMed 

    Google Scholar 

  • 19.

    Stuart, H. S., Wang, S., Khatib, O. & Cutkosky, M. R. The Ocean One hands: an adaptive design for robust marine manipulation. Int. J. Robot. Res. 36, 150–166 (2017).

    Google Scholar 

  • 20.

    Stuart, H. S., Wang, S. & Cutkosky, M. R. Tunable contact conditions and grasp hydrodynamics using gentle fingertip suction. IEEE Trans. Robot. 35, 295–306 (2019).

    Google Scholar 

  • 21.

    Renda, F., Giorelli, M., Calisti, M., Cianchetti, M. & Laschi, C. Dynamic model of a multibending soft robot arm driven by cables. IEEE Trans. Robot. 30, 1109–1122 (2014).

    Google Scholar 

  • 22.

    Lum, G. Z. et al. Shape-programmable magnetic soft matter. Proc. Natl Acad. Sci. USA 113, E6007–E6015 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Laschi, C. Soft robot arm inspired by the octopus. Adv. Robot. 26, 709–727 (2012).

    Google Scholar 

  • 24.

    Weymouth, G. & Triantafyllou, M. S. Ultra-fast escape of a deformable jet-propelled body. J. Fluid Mech. 721, 367–385 (2013).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • 25.

    Giorgio-Serchi, F., Arienti, A. & Laschi, C. Underwater soft-bodied pulsed-jet thrusters: actuator modeling and performance profiling. Int. J. Robot. Res. 35, 1308–1329 (2016).

    Google Scholar 

  • 26.

    Serchi, F. G., Lidtke, A. K. & Weymouth, G. A soft aquatic actuator for unsteady peak power amplification. IEEE–ASME Trans. Mechatron. 23, 2968–2973 (2018).

    Google Scholar 

  • 27.

    Vogt, D. M. et al. Shipboard design and fabrication of custom 3D-printed soft robotic manipulators for the investigation of delicate deep-sea organisms. PLoS ONE 13, e0200386 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Phillips, B. T. et al. A dexterous, glove-based teleoperable low-power soft robotic arm for delicate deep-sea biological exploration. Sci. Rep. 8, 14779 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Galloway, K. C. et al. Soft robotic grippers for biological sampling on deep reefs. Soft Robot. 3, 23–33 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Chen, Y. et al. Controlled flight of a microrobot powered by soft artificial muscles. Nature 575, 324–329 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Li, T. et al. Fast-moving soft electronic fish. Sci. Adv. 3, e1602045 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Christianson, C., Goldberg, N. N., Deheyn, D. D., Cai, S. & Tolley, M. T. Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci. Robot. 3, eaat1893 (2018).

    PubMed 

    Google Scholar 

  • 33.

    Ji, X. et al. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 4, eaaz6451 (2019).

    PubMed 

    Google Scholar 

  • 34.

    Acome, E. et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Chiba, S. et al. Electroactive polymer ‘artificial muscle’ operable in ultra-high hydrostatic pressure environment. IEEE Sens. J. 11, 3–4 (2011).

    ADS 

    Google Scholar 

  • 36.

    Yuk, H. et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8, 14230 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Marchese, A. D., Onal, C. D. & Rus, D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robot. 1, 75–87 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Morin, S. A. et al. Camouflage and display for soft machines. Science 337, 828–832 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Li, S., Vogt, D. M., Rus, D. & Wood, R. J. Fluid-driven origami-inspired artificial muscles. Proc. Natl Acad. Sci. USA 114, 13132–13137 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Wehner, M. et al. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536, 451–455 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Aubin, C. A. et al. Electrolytic vascular systems for energy-dense robots. Nature 571, 51–57 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Sandoval, J. A., Jadhav, S., Quan, H., Deheyn, D. D. & Tolley, M. T. Reversible adhesion to rough surfaces both in and out of water, inspired by the clingfish suction disc. Bioinspir. Biomim. 14, 066016 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Wang, Y. et al. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish. Sci. Robot. 2, eaan8072 (2017).

    PubMed 

    Google Scholar 

  • 44.

    Koh, S. J. et al. Mechanisms of large actuation strain in dielectric elastomers. J. Polym. Sci. B 49, 504–515 (2011).

    CAS 

    Google Scholar 

  • 45.

    Zhao, X. & Suo, Z. Method to analyze programmable deformation of dielectric elastomer layers. Appl. Phys. Lett. 93, 251902 (2008).

    ADS 

    Google Scholar 

  • 46.

    Ma, Z. et al. Thermoplastic dielectric elastomer of triblock copolymer with high electromechanical performance. Macromol. Rapid Commun. 38, 1700268 (2017).

    Google Scholar 

  • 47.

    Passaglia, E. & Martin, G. M. Variation of glass temperature with pressure in polypropylene. J. Res. Natl Bur. Stand. A 68, 273–276 (1964).

    Google Scholar 

  • 48.

    Jones Parry, E. & Tabor, D. Effect of hydrostatic pressure on the mechanical properties of polymers: a brief review of published data. J. Mater. Sci. 8, 1510–1516 (1973).

    ADS 
    CAS 

    Google Scholar 

  • 49.

    Yang, C., Gao, X. & Luo, Y. End-block-curing ABA triblock copolymer towards dielectric elastomers with both high electro-mechanical performance and excellent mechanical properties. Chem. Eng. J. 382, 123037 (2020).

    CAS 

    Google Scholar 

  • 50.

    Joung, T. et al. A study on the pressure vessel design, structural analysis and pressure test of a 6000 m depth-rated unmanned underwater vehicle. Ships Offshore Struct. 3, 205–214 (2008).

    Google Scholar 

  • 51.

    Liang, C. et al. A study of diving depth on deep-diving submersible vehicles. Int. J. Press. Vessels Piping 75, 447–457 (1998).

    Google Scholar 

  • 52.

    Hernes, M. & Pittini, R. Enabling pressure tolerant power electronic converters for subsea applications. In 13th European Conference on Power Electronics and Applications https://ieeexplore.ieee.org/document/5278719 (IEEE, 2009).

  • 53.

    Thiede, C. et al. An overall pressure tolerant underwater vehicle: DNS Pegel. In IEEE Oceans Conf. https://ieeexplore.ieee.org/document/5278313 (IEEE, 2009).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *