Mei, W. et al. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci. Adv. 1, e1500014 (2015).
Google Scholar
Shan, K. & Yu, X. Interdecadal variability of tropical cyclone genesis frequency in western North Pacific and South Pacific Ocean basins. Environ. Res. Lett. 15, 064030 (2020).
Google Scholar
Klotzbach, P. et al. Surface pressure a more skillful predictor of normalized hurricane damage than maximum sustained wind. Bull. Am. Meteorological Soc. 101, E830–E846 (2020).
Google Scholar
Patricola, C., Cassidy, D. & Klotzbach, P. Tropical oceanic influences on observed global tropical cyclone frequency. Geophys. Res. Lett. 49, e2022GL099354 (2022).
Google Scholar
Zhu, Y., Collins, J., Klotzbach, P. & Schreck, C. III Hurricane Ida (2021): rapid intensification followed by slow inland decay. Bull. Am. Meteorological Soc. 103, E2354–E2369 (2022).
Google Scholar
Song, F., Leung, R., Lu, J. & Dong, L. Seasonally dependent responses of subtropical highs and tropical rainfall to anthropogenic warming. Nat. Clim. Change 8, 787–792 (2018).
Google Scholar
Song, F. et al. Emergence of seasonal delay of tropical rainfall during 1979–2019. Nat. Clim. Change 11, 605–612 (2021).
Google Scholar
Mei, W. & Xie, S. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nat. Geosci. 9, 753–757 (2016).
Google Scholar
Wang, S. & Toumi, R. Recent migration of tropical cyclones toward coasts. Science 371, 514–517 (2021).
Google Scholar
IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al) (Cambridge Univ. Press, 2018).
Emanuel, K. Response of global tropical cyclone activity to increasing CO2: results from downscaling CMIP6 models. J. Clim. 34, 57–69 (2020).
Google Scholar
Kossin, J., Knapp, K., Olander, T. & Velden, C. Global increase in major tropical cyclone exceedance probability over the past four decades. Proc. Natl Acad. Sci. USA 117, 11975–11980 (2020).
Google Scholar
Chand, S. et al. Declining tropical cyclone frequency under global warming. Nat. Clim. Change 12, 655–661 (2022).
Google Scholar
Emanuel, K. Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years. Nat. Commun. 12, 7027 (2021).
Google Scholar
Vecchi, G. & Knutson, T. On estimates of historical North Atlantic tropical cyclone activity. J. Clim. 21, 3580–3600 (2008).
Google Scholar
Emanuel, K. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl Acad. Sci. USA 110, 12219–12224 (2013).
Google Scholar
Kossin, J., Emanuel, K. & Vecchi, G. The poleward migration of the location of tropical cyclone maximum intensity. Nature 509, 349–352 (2014).
Google Scholar
Sharmila, S. & Walsh, K. Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion. Nat. Clim. Change 8, 730–736 (2018).
Google Scholar
Shan, K. & Yu, X. Enhanced understanding to poleward migration of tropical cyclone genesis. Environ. Res. Lett. 15, 104062 (2020).
Google Scholar
Feng, X., Klingaman, N. & Hodges, K. Poleward migration of western North Pacific tropical cyclones related to changes in cyclone seasonality. Nat. Commun. 12, 6210 (2021).
Google Scholar
Truchelut, R. et al. Earlier onset of North Atlantic hurricane season with warming oceans. Nat. Commun. 13, 4646 (2022).
Google Scholar
Knutson, T. et al. Tropical cyclones and climate change assessment. Part 1: detection and attribution. Bull. Am. Meteorological Soc. 100, 1987–2007 (2019).
Google Scholar
Sobel, A. et al. Human influence on tropical cyclone intensity. Science 353, 242–246 (2016).
Google Scholar
Murakami, H. et al. Dominant effect of relative tropical Atlantic warming on major hurricane occurrence. Science 117, 10706–10714 (2018).
Pielke, R. Jr et al. Normalized hurricane amage in the United States: 1900–2005. Nat. Hazards Rev. 9, 29–42 (2008).
Google Scholar
Mendelsohn, R., Emanuel, K., Chonabayashi, S. & Bakkensen, L. The impact of climate change on global tropical cyclone damage. Nat. Clim. Change 2, 205–209 (2012).
Google Scholar
Klotzbach, P., Bowen, S., Pielke, R. Jr & Bell, M. Continental U.S. hurricane landfall frequency and associated damage: observations and future risks. Bull. Am. Meteorological Soc. 99, 1359–1376 (2018).
Google Scholar
Elsner, J., Kossin, J. & Jagger, T. The increasing intensity of the strongest tropical cyclones. Nature 455, 92–95 (2008).
Google Scholar
Patricola, C. & Wehner, M. Anthropogenic influences on major tropical cyclone events. Nature 563, 339–346 (2018).
Google Scholar
Dwyer, J. et al. Projected twenty-first-century changes in the length of the tropical cyclone season. J. Clim. 28, 6181–6192 (2015).
Google Scholar
Bloemendaal, N. et al. A globally consistent local-scale assessment of future tropical cyclone risk. Sci. Adv. 8, eabm8438 (2022).
Google Scholar
Chu, P. & Murakami, H. Climate Variability and Tropical Cyclone Activity (Cambridge Univ. Press, 2022).
Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).
Google Scholar
Matthews, T., Wilby, R. & Murphy, C. An emerging tropical cyclone–deadly heat compound hazard. Nat. Clim. Change 9, 602–606 (2019).
Google Scholar
Klotzbach, P. et al. Trends in global tropical cyclone activity: 1990–2021. Geophys. Res. Lett. 49, e2021GL095774 (2022).
Google Scholar
Lee, C. et al. Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nat. Commun. 7, 10625 (2016).
Google Scholar
Klotzbach, P. El Niño–Southern Oscillation, the Madden–Julian Oscillation and Atlantic basin tropical cyclone rapid intensification. J. Geophys. Res. 117, D1410 (2012).
Kaplan, J. et al. Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Weather Forecast. 30, 1374–1396 (2015).
Google Scholar
Ge, X., Shi, D. & Guan, L. Monthly variations of tropical cyclone rapid intensification ratio in the western North Pacific. Atmos. Sci. Lett. 19, e814 (2018).
Google Scholar
Klotzbach, P. et al. Seasonal tropical cyclone forecasting. Trop. Cyclone Res. Rev. 10, 134–149 (2019).
Google Scholar
Bister, M. & Emanuel, K. Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadel variability. J. Geophys. Res. 107, 4801 (2002).
Vecchi, G. & Soden, B. Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450, 1066–1070 (2007).
Google Scholar
Bhatia, K. et al. A potential explanation for the global increase in tropical cyclone rapid intensification. Nat. Commun. 13, 6626 (2022).
Google Scholar
Sobel, A. & Camargo, S. Projected future changes in tropical summer climate. J. Clim. 24, 473–487 (2011).
Google Scholar
Zhao, H., Duan, X., Raga, G. & Klotzbach, P. Changes in characteristics of rapidly intensifying western North Pacific tropical cyclones related to climate regime shifts. J. Clim. 31, 8163–8179 (2018).
Google Scholar
Song, F., Lu, J., Leung, R. & Liu, F. Contrasting phase changes of precipitation annual cycle between land and ocean under global warming. Geophys. Res. Lett. 47, e2020GL090327 (2020).
Google Scholar
Gao, H., Jiang, W. & Li, W. Transition of the annual cycle of precipitation from double-peak mode to single-peak mode in South China. Chin. Sci. Bull. 58, 3994–3999 (2013).
Google Scholar
Luo, Y. et al. Synoptic situations of extreme hourly precipitation over China. J. Clim. 26, 110–132 (2016).
Google Scholar
Marsooli, R., Lin, N., Emanuel, K. & Feng, K. Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf coasts in spatially varying patterns. Nat. Commun. 10, 3785 (2019).
Google Scholar
Easterling, D. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).
Google Scholar
Knapp, K. et al. The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data. Bull. Am. Meteorological Soc. 91, 363–376 (2010).
Google Scholar
Knapp, K. Calibration of long-term geostationary infrared observations using HIRS. J. Atmos. Ocean. Technol. 25, 183–195 (2008).
Google Scholar
Bhatia, T. et al. Recent increases in tropical cyclone intensification rates. Nat. Commun. 10, 635 (2019).
Google Scholar
Wilks, D. Statistical Methods in Atmospheric Sciences (Elsevier, 2019).
Leipper, D. & Volgenau, D. Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr. 2, 218–224 (1972).
Google Scholar
Zuo, H., Balmaseda, M., Mogensen, K. & Tietsche, S. OCEAN5: The ECMWF Ocean Reanalysis System and its Real-Time Analysis Component 2018 ECMWF Technical Memorandum (ECMWF, 2018).
Behringer, D. W. & Xue, Y. Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. In Proc. Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting11–15 (AMS, 2004).
Hersbach, H. et al. The ERA5 global reanalysis. Quart. J. R. Met. Soc. 146, 1999–2049 (2020).
Google Scholar
Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn. 93, 5–48 (2015).
Google Scholar
Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).
Google Scholar
Keller, J. & Wahl, S. Representation of climate in reanalyses: an intercomparison for Europe and North America. J. Clim. 34, 1667–1684 (2021).
Google Scholar
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Google Scholar
Rodgers, K. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn. 12, 1393–1411 (2021).
Google Scholar
Hsu, W., Patricola, C. & Chang, P. The impact of climate model sea surface temperature biases on tropical cyclone simulations. Clim. Dyn. 53, 173–192 (2019).
Google Scholar
Huang, H., Patricola, C. & Collins, W. The influence of ocean coupling on simulated and projected tropical cyclone precipitation in the HighResMIP-PRIMAVERA simulations. Geophys. Res. Lett. 48, e2021GL094801 (2021).
Google Scholar
Gillett, N. et al. The detection and attribution model intercomparison project (DAMIP v1.0) contribution to CMIP6. Geosci. Model Dev. 9, 3685–3697 (2016).
Google Scholar
Chen, M. et al. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. 113, D04110 (2008).
Google Scholar
Dare, R., Davidson, N. & McBride, J. Tropical cyclone contribution to rainfall over Australia. Mon. Weather Rev. 140, 3606–3619 (2012).
Google Scholar
Zhang, W., Villarini, G., Vecchi, G. & Murakami, H. 2019: rainfall from tropical cyclones: high-resolution simulations and seasonal forecasts. Clim. Dyn. 52, 5269–5289 (2019).
Google Scholar
Chen, Y. & Zhai, P. Persistent extreme precipitation events in China during 1951–2010. Clim. Res. 57, 143–155 (2013).
Google Scholar
Chu, P., Chen, Y. & Schroeder, T. Changes in precipitation extremes in the Hawaiian Islands in a warming climate. J. Clim. 23, 4881–4900 (2010).
Google Scholar
Murakami, H. et al. Detected climatic change in global distribution of tropical cyclones. Proc. Natl Acad. Sci. USA 117, 10706–10714 (2020).
Google Scholar
Mondal, A., Kundu, S. & Mukhopadhyay, A. Rainfall trend analysis by Mann–Kendall test: a case study of north-eastern part of Cuttack district, Orissa. Int. J. Geol. Earth. Environ. Sci. 2, 70–78 (2012).
Jiang, J. & Zhou, T. Human‐induced rainfall reduction in drought‐prone northern central Asia. Geophys. Res. Lett. 48, e2020GL092156 (2021).
Google Scholar
Weissgerber, T., Milic, N., Winham, S. & Garovic, V. Beyond bar and line graphs: time for a new data presentation paradigm. PLoS Biol. 13, e1002128 (2015).
Google Scholar
Hunter, J. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
Google Scholar
Bi, D. et al. Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. J. South. Hemisph. Earth Syst. Sci. https://doi.org/10.1071/ES19040 (2020).
Google Scholar
Wu, T. et al. Beijing Climate Center Earth System Model version 1 (BCC-ESM1): model description and evaluation of aerosol simulations. Geosci. Model Dev. 13, 977–1005 (2020).
Google Scholar
Rong, X.-Y. et al. Introduction of CAMS-CSM model and its participation in CMIP6. Clim. Change Res. 15, 540–544 (2019).
Swart, N. C. et al. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev. 12, 4823–4873 (2019).
Google Scholar
Jin, J. B. et al. CAS-ESM2.0 model datasets for the CMIP6 Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP). Adv. Atmos. Sci. 38, 296–306 (2021).
Google Scholar
Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).
Google Scholar
Lin, Y. et al. Community Integrated Earth System Model (CIESM): description and evaluation. J. Adv. Model. Earth Syst. 12, e2019MS002036 (2020).
Google Scholar
Lovato, T. et al. CMIP6 simulations with the CMCC Earth System Model (CMCC-ESM2). J. Adv. Model. Earth Syst. 14, e2021MS002814 (2022).
Google Scholar
Zheng, X. et al. Description of historical and future projection simulations by the global coupled E3SMv1.0 model as used in CMIP6. Geosci. Model Dev. 15, 3941–3967 (2022).
Google Scholar
Li, L. et al. The flexible global ocean-atmosphere-land system model grid-point version 3 (fgoals-g3): description and evaluation. J. Adv. Model. Earth Syst. 12, e2019MS002012 (2020).
Google Scholar
Bao, Y., Song, Z. & Qiao, F. FIO-ESM version 2.0: model description and evaluation. J. Geophys. Res. Oceans 125, e2019JC016036 (2020).
Google Scholar
Dunne, J. P. et al. The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst. 12, e2019MS002015 (2020).
Google Scholar
Kelley, M. et al. GISS-E2.1: configurations and climatology. J. Adv. Model. Earth Syst. 12, e2019MS002025 (2020).
Google Scholar
Volodin, E. & Gritsun, A. Simulation of observed climate changes in 1850–2014 with climate model INM-CM5. Earth Syst. Dyn. 9, 1235–1242 (2018).
Google Scholar
Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst. 12, e2019MS002010 (2020).
Google Scholar
Stouffer, R. U of Arizona MCM-UA-1-0 Model Output Prepared for CMIP6 CMIP v.20230314 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.2421.
Mauritsen, T. et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).
Google Scholar
Yukimoto, S. et al. The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component. J. Meteor. Soc. Japan 97, 931–965 (2019).
Google Scholar
Cao, J. et al. The NUIST Earth System Model (NESM) version 3: description and preliminary evaluation. Geosci. Model Dev. 11, 2975–2993 (2018).
Google Scholar
Seland, Ø. et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 13, 6165–6200 (2020).
Google Scholar