Strange IndiaStrange India


  • Mei, W. et al. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci. Adv. 1, e1500014 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shan, K. & Yu, X. Interdecadal variability of tropical cyclone genesis frequency in western North Pacific and South Pacific Ocean basins. Environ. Res. Lett. 15, 064030 (2020).

    Article 
    ADS 

    Google Scholar 

  • Klotzbach, P. et al. Surface pressure a more skillful predictor of normalized hurricane damage than maximum sustained wind. Bull. Am. Meteorological Soc. 101, E830–E846 (2020).

    Article 

    Google Scholar 

  • Patricola, C., Cassidy, D. & Klotzbach, P. Tropical oceanic influences on observed global tropical cyclone frequency. Geophys. Res. Lett. 49, e2022GL099354 (2022).

    Article 
    ADS 

    Google Scholar 

  • Zhu, Y., Collins, J., Klotzbach, P. & Schreck, C. III Hurricane Ida (2021): rapid intensification followed by slow inland decay. Bull. Am. Meteorological Soc. 103, E2354–E2369 (2022).

    Article 

    Google Scholar 

  • Song, F., Leung, R., Lu, J. & Dong, L. Seasonally dependent responses of subtropical highs and tropical rainfall to anthropogenic warming. Nat. Clim. Change 8, 787–792 (2018).

    Article 
    ADS 

    Google Scholar 

  • Song, F. et al. Emergence of seasonal delay of tropical rainfall during 1979–2019. Nat. Clim. Change 11, 605–612 (2021).

    Article 
    ADS 

    Google Scholar 

  • Mei, W. & Xie, S. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nat. Geosci. 9, 753–757 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, S. & Toumi, R. Recent migration of tropical cyclones toward coasts. Science 371, 514–517 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al) (Cambridge Univ. Press, 2018).

  • Emanuel, K. Response of global tropical cyclone activity to increasing CO2: results from downscaling CMIP6 models. J. Clim. 34, 57–69 (2020).

    Article 
    ADS 

    Google Scholar 

  • Kossin, J., Knapp, K., Olander, T. & Velden, C. Global increase in major tropical cyclone exceedance probability over the past four decades. Proc. Natl Acad. Sci. USA 117, 11975–11980 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chand, S. et al. Declining tropical cyclone frequency under global warming. Nat. Clim. Change 12, 655–661 (2022).

    Article 
    ADS 

    Google Scholar 

  • Emanuel, K. Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years. Nat. Commun. 12, 7027 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vecchi, G. & Knutson, T. On estimates of historical North Atlantic tropical cyclone activity. J. Clim. 21, 3580–3600 (2008).

    Article 
    ADS 

    Google Scholar 

  • Emanuel, K. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl Acad. Sci. USA 110, 12219–12224 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kossin, J., Emanuel, K. & Vecchi, G. The poleward migration of the location of tropical cyclone maximum intensity. Nature 509, 349–352 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sharmila, S. & Walsh, K. Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion. Nat. Clim. Change 8, 730–736 (2018).

    Article 
    ADS 

    Google Scholar 

  • Shan, K. & Yu, X. Enhanced understanding to poleward migration of tropical cyclone genesis. Environ. Res. Lett. 15, 104062 (2020).

    Article 
    ADS 

    Google Scholar 

  • Feng, X., Klingaman, N. & Hodges, K. Poleward migration of western North Pacific tropical cyclones related to changes in cyclone seasonality. Nat. Commun. 12, 6210 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Truchelut, R. et al. Earlier onset of North Atlantic hurricane season with warming oceans. Nat. Commun. 13, 4646 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knutson, T. et al. Tropical cyclones and climate change assessment. Part 1: detection and attribution. Bull. Am. Meteorological Soc. 100, 1987–2007 (2019).

    Article 
    ADS 

    Google Scholar 

  • Sobel, A. et al. Human influence on tropical cyclone intensity. Science 353, 242–246 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Murakami, H. et al. Dominant effect of relative tropical Atlantic warming on major hurricane occurrence. Science 117, 10706–10714 (2018).

    Google Scholar 

  • Pielke, R. Jr et al. Normalized hurricane amage in the United States: 1900–2005. Nat. Hazards Rev. 9, 29–42 (2008).

    Article 

    Google Scholar 

  • Mendelsohn, R., Emanuel, K., Chonabayashi, S. & Bakkensen, L. The impact of climate change on global tropical cyclone damage. Nat. Clim. Change 2, 205–209 (2012).

    Article 
    ADS 

    Google Scholar 

  • Klotzbach, P., Bowen, S., Pielke, R. Jr & Bell, M. Continental U.S. hurricane landfall frequency and associated damage: observations and future risks. Bull. Am. Meteorological Soc. 99, 1359–1376 (2018).

    Article 
    ADS 

    Google Scholar 

  • Elsner, J., Kossin, J. & Jagger, T. The increasing intensity of the strongest tropical cyclones. Nature 455, 92–95 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Patricola, C. & Wehner, M. Anthropogenic influences on major tropical cyclone events. Nature 563, 339–346 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dwyer, J. et al. Projected twenty-first-century changes in the length of the tropical cyclone season. J. Clim. 28, 6181–6192 (2015).

    Article 
    ADS 

    Google Scholar 

  • Bloemendaal, N. et al. A globally consistent local-scale assessment of future tropical cyclone risk. Sci. Adv. 8, eabm8438 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chu, P. & Murakami, H. Climate Variability and Tropical Cyclone Activity (Cambridge Univ. Press, 2022).

  • Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

    Article 
    ADS 

    Google Scholar 

  • Matthews, T., Wilby, R. & Murphy, C. An emerging tropical cyclone–deadly heat compound hazard. Nat. Clim. Change 9, 602–606 (2019).

    Article 
    ADS 

    Google Scholar 

  • Klotzbach, P. et al. Trends in global tropical cyclone activity: 1990–2021. Geophys. Res. Lett. 49, e2021GL095774 (2022).

    Article 
    ADS 

    Google Scholar 

  • Lee, C. et al. Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nat. Commun. 7, 10625 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klotzbach, P. El Niño–Southern Oscillation, the Madden–Julian Oscillation and Atlantic basin tropical cyclone rapid intensification. J. Geophys. Res. 117, D1410 (2012).

    Google Scholar 

  • Kaplan, J. et al. Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Weather Forecast. 30, 1374–1396 (2015).

    Article 
    ADS 

    Google Scholar 

  • Ge, X., Shi, D. & Guan, L. Monthly variations of tropical cyclone rapid intensification ratio in the western North Pacific. Atmos. Sci. Lett. 19, e814 (2018).

    Article 
    ADS 

    Google Scholar 

  • Klotzbach, P. et al. Seasonal tropical cyclone forecasting. Trop. Cyclone Res. Rev. 10, 134–149 (2019).

    Article 

    Google Scholar 

  • Bister, M. & Emanuel, K. Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadel variability. J. Geophys. Res. 107, 4801 (2002).

    Google Scholar 

  • Vecchi, G. & Soden, B. Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450, 1066–1070 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bhatia, K. et al. A potential explanation for the global increase in tropical cyclone rapid intensification. Nat. Commun. 13, 6626 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sobel, A. & Camargo, S. Projected future changes in tropical summer climate. J. Clim. 24, 473–487 (2011).

    Article 
    ADS 

    Google Scholar 

  • Zhao, H., Duan, X., Raga, G. & Klotzbach, P. Changes in characteristics of rapidly intensifying western North Pacific tropical cyclones related to climate regime shifts. J. Clim. 31, 8163–8179 (2018).

    Article 
    ADS 

    Google Scholar 

  • Song, F., Lu, J., Leung, R. & Liu, F. Contrasting phase changes of precipitation annual cycle between land and ocean under global warming. Geophys. Res. Lett. 47, e2020GL090327 (2020).

    Article 
    ADS 

    Google Scholar 

  • Gao, H., Jiang, W. & Li, W. Transition of the annual cycle of precipitation from double-peak mode to single-peak mode in South China. Chin. Sci. Bull. 58, 3994–3999 (2013).

    Article 

    Google Scholar 

  • Luo, Y. et al. Synoptic situations of extreme hourly precipitation over China. J. Clim. 26, 110–132 (2016).

    Article 
    ADS 

    Google Scholar 

  • Marsooli, R., Lin, N., Emanuel, K. & Feng, K. Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf coasts in spatially varying patterns. Nat. Commun. 10, 3785 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Easterling, D. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Knapp, K. et al. The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data. Bull. Am. Meteorological Soc. 91, 363–376 (2010).

    Article 
    ADS 

    Google Scholar 

  • Knapp, K. Calibration of long-term geostationary infrared observations using HIRS. J. Atmos. Ocean. Technol. 25, 183–195 (2008).

    Article 
    ADS 

    Google Scholar 

  • Bhatia, T. et al. Recent increases in tropical cyclone intensification rates. Nat. Commun. 10, 635 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilks, D. Statistical Methods in Atmospheric Sciences (Elsevier, 2019).

  • Leipper, D. & Volgenau, D. Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr. 2, 218–224 (1972).

    2.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0485%281972%29002%3C0218%3AHHPOTG%3E2.0.CO%3B2″ aria-label=”Article reference 55″ data-doi=”10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2″>Article 
    ADS 

    Google Scholar 

  • Zuo, H., Balmaseda, M., Mogensen, K. & Tietsche, S. OCEAN5: The ECMWF Ocean Reanalysis System and its Real-Time Analysis Component 2018 ECMWF Technical Memorandum (ECMWF, 2018).

  • Behringer, D. W. & Xue, Y. Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. In Proc. Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting11–15 (AMS, 2004).

  • Hersbach, H. et al. The ERA5 global reanalysis. Quart. J. R. Met. Soc. 146, 1999–2049 (2020).

    Article 
    ADS 

    Google Scholar 

  • Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn. 93, 5–48 (2015).

    Article 
    ADS 

    Google Scholar 

  • Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Article 
    ADS 

    Google Scholar 

  • Keller, J. & Wahl, S. Representation of climate in reanalyses: an intercomparison for Europe and North America. J. Clim. 34, 1667–1684 (2021).

    Article 
    ADS 

    Google Scholar 

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 
    ADS 

    Google Scholar 

  • Rodgers, K. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn. 12, 1393–1411 (2021).

    Article 
    ADS 

    Google Scholar 

  • Hsu, W., Patricola, C. & Chang, P. The impact of climate model sea surface temperature biases on tropical cyclone simulations. Clim. Dyn. 53, 173–192 (2019).

    Article 

    Google Scholar 

  • Huang, H., Patricola, C. & Collins, W. The influence of ocean coupling on simulated and projected tropical cyclone precipitation in the HighResMIP-PRIMAVERA simulations. Geophys. Res. Lett. 48, e2021GL094801 (2021).

    Article 
    ADS 

    Google Scholar 

  • Gillett, N. et al. The detection and attribution model intercomparison project (DAMIP v1.0) contribution to CMIP6. Geosci. Model Dev. 9, 3685–3697 (2016).

    Article 
    ADS 

    Google Scholar 

  • Chen, M. et al. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. 113, D04110 (2008).

    ADS 

    Google Scholar 

  • Dare, R., Davidson, N. & McBride, J. Tropical cyclone contribution to rainfall over Australia. Mon. Weather Rev. 140, 3606–3619 (2012).

    Article 
    ADS 

    Google Scholar 

  • Zhang, W., Villarini, G., Vecchi, G. & Murakami, H. 2019: rainfall from tropical cyclones: high-resolution simulations and seasonal forecasts. Clim. Dyn. 52, 5269–5289 (2019).

    Article 

    Google Scholar 

  • Chen, Y. & Zhai, P. Persistent extreme precipitation events in China during 1951–2010. Clim. Res. 57, 143–155 (2013).

    Article 

    Google Scholar 

  • Chu, P., Chen, Y. & Schroeder, T. Changes in precipitation extremes in the Hawaiian Islands in a warming climate. J. Clim. 23, 4881–4900 (2010).

    Article 
    ADS 

    Google Scholar 

  • Murakami, H. et al. Detected climatic change in global distribution of tropical cyclones. Proc. Natl Acad. Sci. USA 117, 10706–10714 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mondal, A., Kundu, S. & Mukhopadhyay, A. Rainfall trend analysis by Mann–Kendall test: a case study of north-eastern part of Cuttack district, Orissa. Int. J. Geol. Earth. Environ. Sci. 2, 70–78 (2012).

    Google Scholar 

  • Jiang, J. & Zhou, T. Human‐induced rainfall reduction in drought‐prone northern central Asia. Geophys. Res. Lett. 48, e2020GL092156 (2021).

    Article 
    ADS 

    Google Scholar 

  • Weissgerber, T., Milic, N., Winham, S. & Garovic, V. Beyond bar and line graphs: time for a new data presentation paradigm. PLoS Biol. 13, e1002128 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hunter, J. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar 

  • Bi, D. et al. Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. J. South. Hemisph. Earth Syst. Sci. https://doi.org/10.1071/ES19040 (2020).

    Article 

    Google Scholar 

  • Wu, T. et al. Beijing Climate Center Earth System Model version 1 (BCC-ESM1): model description and evaluation of aerosol simulations. Geosci. Model Dev. 13, 977–1005 (2020).

    Article 
    ADS 

    Google Scholar 

  • Rong, X.-Y. et al. Introduction of CAMS-CSM model and its participation in CMIP6. Clim. Change Res. 15, 540–544 (2019).

    Google Scholar 

  • Swart, N. C. et al. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev. 12, 4823–4873 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jin, J. B. et al. CAS-ESM2.0 model datasets for the CMIP6 Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP). Adv. Atmos. Sci. 38, 296–306 (2021).

    Article 

    Google Scholar 

  • Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).

    Article 
    ADS 

    Google Scholar 

  • Lin, Y. et al. Community Integrated Earth System Model (CIESM): description and evaluation. J. Adv. Model. Earth Syst. 12, e2019MS002036 (2020).

    Article 
    ADS 

    Google Scholar 

  • Lovato, T. et al. CMIP6 simulations with the CMCC Earth System Model (CMCC-ESM2). J. Adv. Model. Earth Syst. 14, e2021MS002814 (2022).

    Article 
    ADS 

    Google Scholar 

  • Zheng, X. et al. Description of historical and future projection simulations by the global coupled E3SMv1.0 model as used in CMIP6. Geosci. Model Dev. 15, 3941–3967 (2022).

    Article 
    ADS 

    Google Scholar 

  • Li, L. et al. The flexible global ocean-atmosphere-land system model grid-point version 3 (fgoals-g3): description and evaluation. J. Adv. Model. Earth Syst. 12, e2019MS002012 (2020).

    Article 
    ADS 

    Google Scholar 

  • Bao, Y., Song, Z. & Qiao, F. FIO-ESM version 2.0: model description and evaluation. J. Geophys. Res. Oceans 125, e2019JC016036 (2020).

    Article 
    ADS 

    Google Scholar 

  • Dunne, J. P. et al. The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst. 12, e2019MS002015 (2020).

    Article 
    ADS 

    Google Scholar 

  • Kelley, M. et al. GISS-E2.1: configurations and climatology. J. Adv. Model. Earth Syst. 12, e2019MS002025 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Volodin, E. & Gritsun, A. Simulation of observed climate changes in 1850–2014 with climate model INM-CM5. Earth Syst. Dyn. 9, 1235–1242 (2018).

    Article 
    ADS 

    Google Scholar 

  • Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst. 12, e2019MS002010 (2020).

    Article 
    ADS 

    Google Scholar 

  • Stouffer, R. U of Arizona MCM-UA-1-0 Model Output Prepared for CMIP6 CMIP v.20230314 (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.2421.

  • Mauritsen, T. et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yukimoto, S. et al. The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component. J. Meteor. Soc. Japan 97, 931–965 (2019).

    Article 
    ADS 

    Google Scholar 

  • Cao, J. et al. The NUIST Earth System Model (NESM) version 3: description and preliminary evaluation. Geosci. Model Dev. 11, 2975–2993 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Seland, Ø. et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 13, 6165–6200 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *