Strange India All Strange Things About India and world


  • Borjigin, J. et al. Surge of neurophysiological coherence and connectivity in the dying brain. Proc. Natl Acad. Sci. USA 110, 14432–14437 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cole, S. L. & Corday, E. Four-minute limit for cardiac resuscitation. J. Am. Med. Assoc. 161, 1454–1458 (1956).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Parnia, S., Waller, D. G., Yeates, R. & Fenwick, P. A qualitative and quantitative study of the incidence, features and aetiology of near death experiences in cardiac arrest survivors. Resuscitation 48, 149–156 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vrselja, Z. et al. Restoration of brain circulation and cellular functions hours post-mortem. Nature 568, 336–343 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Iyer, A. et al. Pathophysiological trends during withdrawal of life support: implications for organ donation after circulatory death. Transplantation 100, 2621–2629 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Donaldson, A. E. & Lamont, I. L. Biochemistry changes that occur after death: potential markers for determining post-mortem interval. PLoS ONE 8, e82011 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Yu, D. Y. & Cringle, S. J. Oxygen distribution in the mouse retina. Invest. Ophthalmol. Vis. Sci. 47, 1109–1112 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Zhu, S. et al. Impact of euthanasia, dissection and postmortem delay on metabolic profile in mouse retina and RPE/choroid. Exp. Eye Res. 174, 113–120 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wu, J. Y. & Prentice, H. Role of taurine in the central nervous system. J. Biomed. Sci. 17, S1 (2010). Suppl. 1.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Ingram, N. T., Fain, G. L. & Sampath, A. P. Elevated energy requirement of cone photoreceptors. Proc. Natl Acad. Sci. USA 117, 19599–19603 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cowan, C. S. et al. Cell types of the human retina and its organoids at single-cell resolution. Cell 182, 1623–1640.e1634 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, J. S. & Kefalov, V. J. An alternative pathway mediates the mouse and human cone visual cycle. Curr. Biol. 19, 1665–1669 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schnapf, J. L., Kraft, T. W. & Baylor, D. A. Spectral sensitivity of human cone photoreceptors. Nature 325, 439–441 (1987).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kraft, T. W., Neitz, J. & Neitz, M. Spectra of human L cones. Vision Res. 38, 3663–3670 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Huang, J. C., Voaden, M. J. & Marshall, J. Survival of structure and function in postmortem rat and human retinas: rhodopsin regeneration, cGMP and the ERG. Curr. Eye Res. 9, 151–162 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Huang, J. C., Voaden, M. J., Marshall, J. & Kemp, C. M. Electrophysiologic characteristics of human and rat retinas in vitro. Doc. Ophthalmol. 76, 27–35 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Huang, J. C., Arden, G. B., Voaden, M. J. & Marshall, J. Survival of cone responses in postmortem human retina. Doc. Ophthalmol. 83, 91–96 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kraft, T. W., Schneeweis, D. M. & Schnapf, J. L. Visual transduction in human rod photoreceptors. J. Physiol. 464, 747–765 (1993).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vinberg, F., Kolesnikov, A. V. & Kefalov, V. J. Ex vivo ERG analysis of photoreceptors using an in vivo ERG system. Vision Res. 101, 108–117 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nymark, S., Haldin, C., Tenhu, H. & Koskelainen, A. A new method for measuring free drug concentration: retinal tissue as a biosensor. Invest. Ophthalmol. Vis. Sci. 47, 2583–2588 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Weinstein, G. W., Hobson, R. R. & Dowling, J. E. Light and dark adaptation in the isolated rat retina. Nature 215, 134–138 (1967).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Winkler, B. S. The electroretinogram of the isolated rat retina. Vision Res. 12, 1183–1198 (1972).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Granit, R. The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve. J. Physiol. 77, 207–239 (1933).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Masland, R. H. & Ames, A. 3rd Dissociation of field potential from neuronal activity in the isolated retina: failure of the b-wave with normal ganglion cell response. J. Neurobiol. 6, 305–312 (1975).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kim, H. M., Park, K. H. & Woo, S. J. Correlation of electroretinography components with visual function and prognosis of central retinal artery occlusion. Sci. Rep. 10, 12146 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Reinhard, K. et al. Hypothermia promotes survival of ischemic retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 57, 658–663 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mure, L. S., Vinberg, F., Hanneken, A. & Panda, S. Functional diversity of human intrinsically photosensitive retinal ganglion cells. Science 366, 1251–1255 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Raeburn, C. D., Cleveland, J. C. Jr, Zimmerman, M. A. & Harken, A. H. Organ preconditioning. Arch. Surg. 136, 1263–1266 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Reinhard, K. & Munch, T. A. Visual properties of human retinal ganglion cells. PLoS ONE 16, e0246952 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Soto, F. et al. Efficient coding by midget and parasol ganglion cells in the human retina. Neuron 107, 656–666.e655 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Weinstein, G. W., Hobson, R. R. & Baker, F. H. Extracellular recordings from human retinal ganglion cells. Science 171, 1021–1022 (1971).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Robson, J. G., Saszik, S. M., Ahmed, J. & Frishman, L. J. Rod and cone contributions to the a-wave of the electroretinogram of the macaque. J. Physiol. 547, 509–530 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kuchenbecker, J. A., Greenwald, S. H., Neitz, M. & Neitz, J. Cone-isolating ON–OFF electroretinogram for studying chromatic pathways in the retina. J. Opt. Soc. Am. A 31, A208–A213 (2014).

    ADS 
    Article 

    Google Scholar 

  • Yan, W. et al. Cell atlas of the human fovea and peripheral retina. Sci. Rep. 10, 9802 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lu, Y. et al. Single-cell analysis of human retina identifies evolutionarily conserved and species-specific mechanisms controlling development. Dev. Cell 53, 473–491.e479 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kling, A. et al. Functional organization of midget and parasol ganglion cells in the human retina. Preprint at https://doi.org/10.1101/2020.08.07.240762 (2020).

  • Yi, W. et al. A single-cell transcriptome atlas of the aging human and macaque retina. Nat. Sci. Rev. 8, nwaa179 (2020).

    Article 
    CAS 

    Google Scholar 

  • Fortenbach, C. R., Kessler, C., Peinado Allina, G. & Burns, M. E. Speeding rod recovery improves temporal resolution in the retina. Vision Res. 110, 57–67 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pepperberg, D. R. et al. Light-dependent delay in the falling phase of the retinal rod photoresponse. Vis. Neurosci. 8, 9–18 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gross, O. P. & Burns, M. E. Control of rhodopsin’s active lifetime by arrestin-1 expression in mammalian rods. J. Neurosci. 30, 3450–3457 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Krispel, C. M. et al. RGS expression rate-limits recovery of rod photoresponses. Neuron 51, 409–416 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Owsley, C. et al. Psychophysical evidence for rod vulnerability in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 41, 267–273 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Curcio, C. A., Medeiros, N. E. & Millican, C. L. Photoreceptor loss in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 37, 1236–1249 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Sinha, R. et al. Cellular and circuit mechanisms shaping the perceptual properties of the primate fovea. Cell 168, 413–426.e412 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • van Hateren, J. H. & Lamb, T. D. The photocurrent response of human cones is fast and monophasic. BMC Neurosci. 7, 34 (2006).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pearson, R. A. et al. Restoration of vision after transplantation of photoreceptors. Nature 485, 99–103 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, T. et al. Activation of rod input in a model of retinal degeneration reverses retinal remodeling and induces formation of functional synapses and recovery of visual signaling in the adult retina. J. Neurosci. 39, 6798–6810 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Telias, M. et al. Retinoic acid induces hyperactivity, and blocking its receptor unmasks light responses and augments vision in retinal degeneration. Neuron 102, 574–586.e5 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jones, B. W. et al. Retinal remodeling and metabolic alterations in human AMD. Front. Cell. Neurosci. 10, 103 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, B. W. et al. Retinal remodeling in human retinitis pigmentosa. Exp. Eye Res. 150, 149–165 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Calvert, P. D. et al. Phototransduction in transgenic mice after targeted deletion of the rod transducin α-subunit. Proc. Natl Acad. Sci. USA 97, 13913–13918 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gurevich, L. & Slaughter, M. M. Comparison of the waveforms of the ON bipolar neuron and the b-wave of the electroretinogram. Vision Res. 33, 2431–2435 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bolnick, D. A., Walter, A. E. & Sillman, A. J. Barium suppresses slow PIII in perfused bullfrog retina. Vision Res. 19, 1117–1119 (1979).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sakami, S. et al. Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations. J. Biol. Chem. 286, 10551–10567 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Marc, R. E., Murry, R. F. & Basinger, S. F. Pattern recognition of amino acid signatures in retinal neurons. J. Neurosci. 15, 5106–5129 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lamb, T. D. & Pugh, E. N. Jr A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. J. Physiol. 449, 719–758 (1992).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smith, N. P. & Lamb, T. D. The a-wave of the human electroretinogram recorded with a minimally invasive technique. Vision Res. 37, 2943–2952 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published.