Strange IndiaStrange India


  • Wells, J. N. & Feschotte, C. A field guide to eukaryotic transposable elements. Ann. Rev. Genet. 54, 539–561 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kazazian, H. H. Jr. & Moran, J. V. Mobile DNA in health and disease. New Engl. J. Med. 377, 361–370 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fueyo, R., Judd, J., Feschotte, C. & Wysocka, J. Roles of transposable elements in the regulation of mammalian transcription. Nat. Rev. Mol. Cell Biol. 23, 481–497 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Frank, J. A. et al. Evolution and antiviral activity of a human protein of retroviral origin. Science 378, 422–428 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, L. et al. Retrotransposon activation during Drosophila metamorphosis conditions adult antiviral responses. Nat. Genet. 54, 1933–1945 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Telesnitsky, A. & Goff, S. P. in Retroviruses (eds Coffin, J. M. et al.) 121–160 (Cold Spring Harbor Laboratory Press, 1997).

  • Wang, L., Dou, K., Moon, S., Tan, F. J. & Zhang, Z. Z. Hijacking oogenesis enables massive propagation of LINE and retroviral transposons. Cell 174, 1082–1094 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, T. & Spradling, A. C. A niche maintaining germ line stem cells in the Drosophila ovary. Science 290, 328–330 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaminker, J. S. et al. The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol. 3, research0084.1 (2002).

    Article 

    Google Scholar 

  • Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lammel, U. & Klambt, C. Specific expression of the Drosophila midline-jumper retro-transposon in embryonic CNS midline cells. Mech. Dev. 100, 339–342 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Siomi, M. C., Sato, K., Pezic, D. & Aravin, A. A. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12, 246–258 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, C. et al. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 137, 509–521 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320–324 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. eccDNAs are apoptotic products with high innate immunostimulatory activity. Nature 599, 308–314 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Henriksen, R. A. et al. Circular DNA in the human germline and its association with recombination. Mol. Cell 82, 209–217 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boeke, J. D., Garfinkel, D. J., Styles, C. A. & Fink, G. R. Ty elements transpose through an RNA intermediate. Cell 40, 491–500 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shoshani, O. et al. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591, 137–141 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Libuda, D. E. & Winston, F. Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae. Nature 443, 1003–1007 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moller, H. D. et al. Formation of extrachromosomal circular DNA from long terminal repeats of retrotransposons in Saccharomyces cerevisiae. G3 6, 453–462 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, P. O. in Retroviruses (eds Coffin, J. M. et al.) 161–204 (Cold Spring Harbor Laboratory Press, 1997).

  • Brambati, A., Barry, R. M. & Sfeir, A. DNA polymerase theta (Polθ)—an error-prone polymerase necessary for genome stability. Curr. Opin. Genet. Dev. 60, 119–126 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mateos-Gomez, P. A. et al. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 518, 254–257 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramsden, D. A., Carvajal-Garcia, J. & Gupta, G. P. Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining. Nat. Rev. Mol. Cell Biol. 23, 125–140 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lauermann, V. & Boeke, J. D. Plus-strand strong-stop DNA transfer in yeast Ty retrotransposons. EMBO J. 16, 6603–6612 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heyman, T., Agoutin, B., Friant, S., Wilhelm, F. X. & Wilhelm, M. L. Plus-strand DNA synthesis of the yeast retrotransposon Ty1 is initiated at two sites, PPT1 next to the 3′ LTR and PPT2 within the pol gene. PPT1 is sufficient for Ty1 transposition. J. Mol. Biol. 253, 291–303 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tanese, N., Telesnitsky, A. & Goff, S. P. Abortive reverse transcription by mutants of Moloney murine leukemia virus deficient in the reverse transcriptase-associated RNase H function. J. Virol. 65, 4387–4397 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Finston, W. I. & Champoux, J. J. RNA-primed initiation of Moloney murine leukemia virus plus strands by reverse transcriptase in vitro. J. Virol. 51, 26–33 (1984).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rhim, H., Park, J. & Morrow, C. D. Deletions in the tRNA(Lys) primer-binding site of human immunodeficiency virus type 1 identify essential regions for reverse transcription. J. Virol. 65, 4555–4564 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Le Grice, S. F. “In the beginning”: initiation of minus strand DNA synthesis in retroviruses and LTR-containing retrotransposons. Biochemistry 42, 14349–14355 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Hu, Z., Leppla, S. H., Li, B. & Elkins, C. A. Antibodies specific for nucleic acids and applications in genomic detection and clinical diagnostics. Expert Rev. Mol. Diagn. 14, 895–916 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gagnier, L., Belancio, V. P. & Mager, D. L. Mouse germ line mutations due to retrotransposon insertions. Mobile DNA 10, 15 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dewannieux, M., Dupressoir, A., Harper, F., Pierron, G. & Heidmann, T. Identification of autonomous IAP LTR retrotransposons mobile in mammalian cells. Nat. Genet. 36, 534–539 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schorn, A. J., Gutbrod, M. J., LeBlanc, C. & Martienssen, R. LTR-retrotransposon control by tRNA-derived small RNAs. Cell 170, 61–71 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shank, P. R. et al. Mapping unintegrated avian sarcoma virus DNA: termini of linear DNA bear 300 nucleotides present once or twice in two species of circular DNA. Cell 15, 1383–1395 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grow, E. J. et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522, 221–225 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. et al. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516, 405–409 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pang, M., McConnell, M. & Fisher, P. A. The Drosophila mus308 gene product, implicated in tolerance of DNA interstrand crosslinks, is a nuclear protein found in both ovaries and embryos. DNA Repair 4, 971–982 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vaidya, A. et al. Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age. PLoS Genet. 10, e1004511 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparinggenomic features. Bioinformatics 26, 841–842 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *