Wells, J. N. & Feschotte, C. A field guide to eukaryotic transposable elements. Ann. Rev. Genet. 54, 539–561 (2020).
Google Scholar
Kazazian, H. H. Jr. & Moran, J. V. Mobile DNA in health and disease. New Engl. J. Med. 377, 361–370 (2017).
Google Scholar
Fueyo, R., Judd, J., Feschotte, C. & Wysocka, J. Roles of transposable elements in the regulation of mammalian transcription. Nat. Rev. Mol. Cell Biol. 23, 481–497 (2022).
Google Scholar
Frank, J. A. et al. Evolution and antiviral activity of a human protein of retroviral origin. Science 378, 422–428 (2022).
Google Scholar
Wang, L. et al. Retrotransposon activation during Drosophila metamorphosis conditions adult antiviral responses. Nat. Genet. 54, 1933–1945 (2022).
Google Scholar
Telesnitsky, A. & Goff, S. P. in Retroviruses (eds Coffin, J. M. et al.) 121–160 (Cold Spring Harbor Laboratory Press, 1997).
Wang, L., Dou, K., Moon, S., Tan, F. J. & Zhang, Z. Z. Hijacking oogenesis enables massive propagation of LINE and retroviral transposons. Cell 174, 1082–1094 (2018).
Google Scholar
Xie, T. & Spradling, A. C. A niche maintaining germ line stem cells in the Drosophila ovary. Science 290, 328–330 (2000).
Google Scholar
Kaminker, J. S. et al. The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol. 3, research0084.1 (2002).
Google Scholar
Wicker, T. et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).
Google Scholar
Lammel, U. & Klambt, C. Specific expression of the Drosophila midline-jumper retro-transposon in embryonic CNS midline cells. Mech. Dev. 100, 339–342 (2001).
Google Scholar
Siomi, M. C., Sato, K., Pezic, D. & Aravin, A. A. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12, 246–258 (2011).
Google Scholar
Li, C. et al. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 137, 509–521 (2009).
Google Scholar
Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320–324 (2006).
Google Scholar
Wang, Y. et al. eccDNAs are apoptotic products with high innate immunostimulatory activity. Nature 599, 308–314 (2021).
Google Scholar
Henriksen, R. A. et al. Circular DNA in the human germline and its association with recombination. Mol. Cell 82, 209–217 (2022).
Google Scholar
Boeke, J. D., Garfinkel, D. J., Styles, C. A. & Fink, G. R. Ty elements transpose through an RNA intermediate. Cell 40, 491–500 (1985).
Google Scholar
Shoshani, O. et al. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591, 137–141 (2021).
Google Scholar
Libuda, D. E. & Winston, F. Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae. Nature 443, 1003–1007 (2006).
Google Scholar
Moller, H. D. et al. Formation of extrachromosomal circular DNA from long terminal repeats of retrotransposons in Saccharomyces cerevisiae. G3 6, 453–462 (2015).
Google Scholar
Brown, P. O. in Retroviruses (eds Coffin, J. M. et al.) 161–204 (Cold Spring Harbor Laboratory Press, 1997).
Brambati, A., Barry, R. M. & Sfeir, A. DNA polymerase theta (Polθ)—an error-prone polymerase necessary for genome stability. Curr. Opin. Genet. Dev. 60, 119–126 (2020).
Google Scholar
Mateos-Gomez, P. A. et al. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 518, 254–257 (2015).
Google Scholar
Ramsden, D. A., Carvajal-Garcia, J. & Gupta, G. P. Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining. Nat. Rev. Mol. Cell Biol. 23, 125–140 (2022).
Google Scholar
Lauermann, V. & Boeke, J. D. Plus-strand strong-stop DNA transfer in yeast Ty retrotransposons. EMBO J. 16, 6603–6612 (1997).
Google Scholar
Heyman, T., Agoutin, B., Friant, S., Wilhelm, F. X. & Wilhelm, M. L. Plus-strand DNA synthesis of the yeast retrotransposon Ty1 is initiated at two sites, PPT1 next to the 3′ LTR and PPT2 within the pol gene. PPT1 is sufficient for Ty1 transposition. J. Mol. Biol. 253, 291–303 (1995).
Google Scholar
Tanese, N., Telesnitsky, A. & Goff, S. P. Abortive reverse transcription by mutants of Moloney murine leukemia virus deficient in the reverse transcriptase-associated RNase H function. J. Virol. 65, 4387–4397 (1991).
Google Scholar
Finston, W. I. & Champoux, J. J. RNA-primed initiation of Moloney murine leukemia virus plus strands by reverse transcriptase in vitro. J. Virol. 51, 26–33 (1984).
Google Scholar
Rhim, H., Park, J. & Morrow, C. D. Deletions in the tRNA(Lys) primer-binding site of human immunodeficiency virus type 1 identify essential regions for reverse transcription. J. Virol. 65, 4555–4564 (1991).
Google Scholar
Le Grice, S. F. “In the beginning”: initiation of minus strand DNA synthesis in retroviruses and LTR-containing retrotransposons. Biochemistry 42, 14349–14355 (2003).
Google Scholar
Hu, Z., Leppla, S. H., Li, B. & Elkins, C. A. Antibodies specific for nucleic acids and applications in genomic detection and clinical diagnostics. Expert Rev. Mol. Diagn. 14, 895–916 (2014).
Google Scholar
Gagnier, L., Belancio, V. P. & Mager, D. L. Mouse germ line mutations due to retrotransposon insertions. Mobile DNA 10, 15 (2019).
Google Scholar
Dewannieux, M., Dupressoir, A., Harper, F., Pierron, G. & Heidmann, T. Identification of autonomous IAP LTR retrotransposons mobile in mammalian cells. Nat. Genet. 36, 534–539 (2004).
Google Scholar
Schorn, A. J., Gutbrod, M. J., LeBlanc, C. & Martienssen, R. LTR-retrotransposon control by tRNA-derived small RNAs. Cell 170, 61–71 (2017).
Google Scholar
Shank, P. R. et al. Mapping unintegrated avian sarcoma virus DNA: termini of linear DNA bear 300 nucleotides present once or twice in two species of circular DNA. Cell 15, 1383–1395 (1978).
Google Scholar
Grow, E. J. et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522, 221–225 (2015).
Google Scholar
Wang, J. et al. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516, 405–409 (2014).
Google Scholar
Macfarlan, T. S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012).
Google Scholar
Pang, M., McConnell, M. & Fisher, P. A. The Drosophila mus308 gene product, implicated in tolerance of DNA interstrand crosslinks, is a nuclear protein found in both ovaries and embryos. DNA Repair 4, 971–982 (2005).
Google Scholar
Vaidya, A. et al. Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age. PLoS Genet. 10, e1004511 (2014).
Google Scholar
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
Google Scholar
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
Google Scholar
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
Google Scholar
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparinggenomic features. Bioinformatics 26, 841–842 (2010).
Google Scholar
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
Google Scholar