Strange IndiaStrange India


  • The IMBIE team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Bamber, J. L., Westaway, R. M., Marzeion, B. & Wouters, B. The land ice contribution to sea level during the satellite era. Environ. Res. Lett. 13, 063008 (2018).

    ADS 
    Article 

    Google Scholar 

  • Gardner, A. S. et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 12, 521–547 (2018). Uses ice-surface-velocity datasets and a SMB model to suggest that, overall, ice discharge from glaciers draining the EAIS was remarkably stable between around 2008 and 2013/2015, whereas those in West Antarctica increased.

    ADS 
    Article 

    Google Scholar 

  • Rignot, E. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019). Uses revised drainage inventory, ice thickness and ice-velocity data, together with a SMB model, to calculate Antarctic Ice Sheet mass balance (1979–2017) and suggest that East Antarctica was an important participant in mass loss.

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schröder, L. et al. Four decades of surface elevation change of the Antarctic Ice Sheet from multi-mission satellite altimetry. Cryosphere 13, 427–449 (2019).

    ADS 
    Article 

    Google Scholar 

  • Shepherd, A. et al. Trends in Antarctic Ice Sheet elevation and mass. Geophys. Res. Lett. 46, 8174–8183 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Velicogna, I. et al. Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions. Geophys. Res. Lett. 47, e2020GL087291 (2020).

    ADS 
    Article 

    Google Scholar 

  • Wang, L., Davis, J. L. & Howat, I. M. Complex patterns of Antarctic ice sheet mass change resolved by time-dependent rate modelling of GRACE and GRACE follow-on observations. Geophys. Res. Lett. 48, e2020GL090961 (2021). Introduces a new approach for analysing satellite gravimetry observations to estimate time-varying mass-change rates in Antarctica and finds a continuously accelerating trend of mass loss in Wilkes Land, East Antarctica, over the past two decades.

    ADS 

    Google Scholar 

  • Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Pritchard, H. D., Arthern, R. J., Vaughan, D. G. & Edwards, L. A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461, 971–975 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Depoorter, M. A. et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 89–92 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fürst, J. J. et al. The safety band of Antarctic ice shelves. Nat. Clim. Change 6, 479–482 (2016).

    ADS 
    Article 

    Google Scholar 

  • Konrad, H. et al. Net retreat of Antarctic glacier grounding lines. Nat. Geosci. 11, 258–262 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gudmundsson, G. H., Paolo, F. S., Adusumilli, S. & Fricker, H. A. Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophys. Res. Lett. 46, 13903–13909 (2019).

    ADS 
    Article 

    Google Scholar 

  • Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. Earth Surf. 112, F03S28 (2007).

    ADS 
    Article 

    Google Scholar 

  • Mercer, J. H. West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271, 321–325 (1978).

    ADS 
    Article 

    Google Scholar 

  • Noble, T. L. et al. The sensitivity of the Antarctic Ice Sheet to a changing climate: past, present and future. Rev. Geophys. 58, e2019RG000663 (2020).

    ADS 
    Article 

    Google Scholar 

  • Sugden, D. E. et al. Preservation of Miocene glacier ice in East Antarctica. Nature 376, 412–414 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Davis, C. H., Li, Y., McConnell, J. R., Frey, M. M. & Hanna, E. Snowfall-driven growth in East Antarctic Ice Sheet mitigates recent sea-level rise. Science 308, 1898–1901 (2005). One of the earliest studies to use satellite radar altimetry to show that sea-level rise was mitigated by snowfall-driven growth of the EAIS (1992–2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zwally, H. J. et al. Mass changes of the Greenland and Antarctic ice sheets and ice shelves and contributions to sea level rise: 1992–2002. J. Glaciol. 51, 509–527 (2005).

    ADS 
    Article 

    Google Scholar 

  • Payne, A. J. et al. Future sea level change under the Coupled Model Intercomparison Project Phase 5 and Phase 6 scenarios from the Greenland and Antarctic ice sheets. Geophys. Res. Lett. 48, e2020GL091741 (2021).

    ADS 
    Article 

    Google Scholar 

  • Greenbaum, J. S. et al. Ocean access to a cavity beneath Totten Glacier in East Antarctica. Nat. Geosci. 8, 294–298 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Rintoul, S. R. et al. Ocean heat drives rapid basal melt of the Totten Ice Shelf. Sci. Adv. 2, e1601610 (2016). Presents observations from the calving front of Totten Glacier, East Antarctica, that confirm that warm water enters the ice-shelf cavity through a deep channel, driving high basal-melt rates.

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Silvano, A., Rintoul, S. R., Pena-Molino, B. & Williams, G. D. Distribution of water masses and meltwater on the continental shelf near the Totten and Moscow University ice shelves. J. Geophys. Res. Oceans 122, 2050–2068 (2017).

    ADS 
    Article 

    Google Scholar 

  • Ribeiro, N. et al. Warm modified Circumpolar Deep Water intrusions drive ice shelf melt and inhibit Dense Shelf Water formation in Vincennes Bay, East Antarctica. J. Geophys. Res. Oceans 126, e20202JC016998 (2021).

    ADS 
    Article 

    Google Scholar 

  • Miles, B. W. J., Stokes, C. R. & Jamieson, S. S. R. Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes. Sci. Adv. 2, e1501350 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mengel, M. & Levermann, A. Ice plug prevents irreversible discharge from East Antarctica. Nat. Clim. Change 4, 451–455 (2014).

    ADS 
    Article 

    Google Scholar 

  • Flament, T. & Rémy, F. Dynamic thinning of Antarctic glaciers from along-track repeat radar altimetry. J. Glaciol. 58, 830–840 (2012).

    ADS 
    Article 

    Google Scholar 

  • Li, X., Rignot, E., Morlighem, M., Mouginot, J. & Scheuchl, B. Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013. Geophys. Res. Lett. 42, 8049–8056 (2015).

    ADS 
    Article 

    Google Scholar 

  • Li, X., Rignot, E., Mouginot, J. & Scheuchl, B. Ice flow dynamics and mass loss of Totten Glacier, East Antarctica, from 1989 to 2015. Geophys. Res. Lett. 43, 6366–6373 (2016).

    ADS 
    Article 

    Google Scholar 

  • Brancato, V. et al. Grounding line retreat of Denman Glacier, East Antarctica, measured with COSMO-SkyMed radar interferometry data. Geophys. Res. Lett. 47, e2019GL086291 (2020). Presents observations of rapid grounding-line retreat (1996–2017/18) along a deep trough from an East Antarctic glacier holding 1.5 m sea-level rise equivalent.

    ADS 
    Article 

    Google Scholar 

  • Miles, B. W. J., Stokes, C. R., Vieli, A. & Cox, N. J. C. Rapid, climate-driven changes in outlet glaciers on the Pacific coast of East Antarctica. Nature 500, 563–566 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Miles, B. W. J., Stokes, C. R. & Jamieson, S. S. R. Simultaneous disintegration of outlet glaciers in Porpoise Bay (Wilkes Land), East Antarctica, driven by sea-ice break-up. Cryosphere 11, 427–442 (2017).

    ADS 
    Article 

    Google Scholar 

  • Miles, B. W. J., Stokes, C. R. & Jamieson, S. S. R. Velocity increases at Cook Glacier, East Antarctica, linked to ice shelf loss and a subglacial flood event. Cryosphere 12, 3123–3136 (2018).

    ADS 
    Article 

    Google Scholar 

  • Cook, C. P. et al. Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nat. Geosci. 6, 765–769 (2013). Suggests that changes in the provenance of sedimentary material on the Wilkes Land continental shelf can be linked to shifts in the position of the EAIS margin and resulting erosional pathways.

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cook, C. P. et al. Sea surface temperature control on the distribution of far-travelled Southern Ocean ice-rafted detritus during the Pliocene. Paleoceanography 29, 533–538 (2014).

    ADS 
    Article 

    Google Scholar 

  • Wilson, D. J. et al. Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. Nature 561, 383–386 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Blackburn, T. et al. Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial. Nature 583, 554–559 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Golledge, N. R. et al. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526, 421–425 (2015). Uses a coupled ice-sheet/ice-shelf model to show that, if atmospheric warming exceeds 1.5 to 2 °C above present, collapse of ice shelves triggers a centennial-scale to millennial-scale response that includes substantial contributions from East Antarctica’s marine basins under ‘high’ scenarios.

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Golledge, N. R., Levy, R. H., McKay, R. M. & Naish, T. R. East Antarctic ice sheet most vulnerable to Weddell Sea warming. Geophys. Res. Lett. 44, 2343–2351 (2017).

    ADS 
    Article 

    Google Scholar 

  • DeConto, R. M. et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593, 83–89 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Boening, C., Lebsock, M., Landerer, F. & Stephens, G. Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett. 39, L21501 (2012). Reports the addition of 350 Gt of snowfall over the EAIS from 2009 to 2011 from extreme precipitation events, equivalent to a decrease in global mean sea level at a rate of 0.32 mm year−1  over this three-year period.

    ADS 

    Google Scholar 

  • Lenaerts, J. T. M. et al. Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys. Res. Lett. 40, 2684–2688 (2013).

    ADS 
    Article 

    Google Scholar 

  • Jones, J. M. et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Change 6, 917–926 (2016).

    ADS 
    Article 

    Google Scholar 

  • Gwyther, D. E. et al. Intrinsic processes drive variability in basal melting of the Totten Glacier Ice Shelf. Nat. Commun. 9, 3141 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • King, M. A. & Watson, C. S. Antarctic surface mass balance: natural variability, noise, and detecting new trends. Geophys. Res. Lett. 47, e2020GL087493 (2020).

    ADS 
    Article 

    Google Scholar 

  • Zachos, J. C., Breza, J. R. & Wise, S. M. Early Oligocene ice-sheet expansion on Antarctica: stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean. Geology 20, 569–573 (1992).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gulick, S. P. S. et al. Initiation and long-term instability of the East Antarctic Ice Sheet. Nature 552, 225–229 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gasson, E. & Keisling, B. A. The Antarctic ice sheet: a paleoclimate modelling perspective. Oceanography 33, 90–100 (2020).

    Article 

    Google Scholar 

  • Naish, T. R. et al. Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary. Nature 413, 719–723 (2001). Presents evidence of cyclic variability in Ross Sea sediment cores that are linked to the oscillating extent of the EAIS during the Oligocene–Miocene transition.

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Levy, R. et al. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene. Proc. Natl Acad. Sci. USA. 113, 3453–3458 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gasson, E., DeConto, R. M., Pollard, D. & Levy, R. H. Dynamic Antarctic ice sheet during the early to mid-Miocene. Proc. Natl Acad. Sci. USA. 113, 3459–3464 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Passchier, S. et al. Early and middle Miocene Antarctic glacial history from the sedimentary facies distribution in the AND-2A drill hole, Ross Sea, Antarctica. Geol. Soc. Am. Bull. 123, 2352–2365 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lewis, A. R. et al. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc. Natl Acad. Sci. USA. 105, 10676–10680 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rae, J. W. B. et al. Atmospheric CO2 over the past 66 million years from marine archives. Annu. Rev. Earth Planet. Sci. 49, 609–641 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sangiori, et al. Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene. Nat. Commun. 9, 317 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Marshalek, J. W. et al. A large West Antarctic Ice Sheet explains early Neogene sea-level amplitude. Nature 600, 450–455 (2021).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Miller, K. G. et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 6, eaaz1346 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lee, J.-Y. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) Ch. 4 (Cambridge Univ. Press, in press).

  • Steinthorsdottir, M. et al. The Miocene: the future of the past. Paleoceanogr. Paleoclimatol. 36, e2020PA004037 (2021).

    Google Scholar 

  • Martínez-Botí, M. A. et al. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518, 49–54 (2015).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Haywood, A. M., Dowsett, H. J. & Dolan, A. M. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat. Commun. 7, 10646 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Oppenheimer, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) Ch. 4 (Cambridge Univ. Press, 2019).

  • Dumitru, O. A. et al. Constraints on global mean sea level during Pliocene warmth. Nature 574, 233–236 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Grant, G. R. et al. The amplitude and origin of sea-level variability during the Pliocene epoch. Nature 574, 237–241 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dolan, A. M. et al. Sensitivity of Pliocene ice sheets to orbital forcing. Palaeogeogr. Palaeoclimatol. Palaeoecol. 309, 98–110 (2011).

    Article 

    Google Scholar 

  • Webb, P. N., Harwood, D. M., McKelvey, B. C., Mercer, J. H. & Stott, L. D. Cenozoic marine sedimentation and ice volume on the East Antarctic craton. Geology 12, 287–291 (1984).

    ADS 
    Article 

    Google Scholar 

  • Scherer, R., DeConto, R., Pollard, D. & Alley, R. B. Windblown Pliocene diatoms and East Antarctic Ice Sheet retreat. Nat. Commun. 7, 12957 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bertram, R. A. et al. Pliocene deglacial event timelines and the biogeochemical response offshore Wilkes Subglacial Basin, East Antarctica. Earth Planet. Sci. Lett. 494, 109–116 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Taylor-Silva, B. I. & Riesselman, C. R. Polar frontal migration in the warm late Pliocene: diatom evidence from the Wilkes Land margin, East Antarctica. Paleoceanogr. Paleoclimatol. 33, 76–92 (2018).

    ADS 
    Article 

    Google Scholar 

  • Williams, T. et al. Evidence for iceberg armadas from East Antarctica in the Southern Ocean during the late Miocene and early Pliocene. Earth Planet. Sci. Lett. 290, 351–361 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Aitken, A. R. A. et al. Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature 533, 385–389 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ohneiser, C. et al. Warm fjords and vegetated landscapes in early Pliocene East Antarctica. Earth Planet. Sci. Lett. 534, 116045 (2020).

    CAS 
    Article 

    Google Scholar 

  • Passchier, S. Linkages between East Antarctic Ice Sheet extent and Southern Ocean temperatures based on a Pliocene high‐resolution record of ice‐rafted debris off Prydz Bay, East Antarctica. Paleoceanogr. 26, PA4204 (2011).

    ADS 
    Article 

    Google Scholar 

  • Golledge, N. R. et al. Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma. Clim. Past 13, 959–975 (2017).

    Article 

    Google Scholar 

  • De Boer, B. et al. Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project. Cryosphere 9, 881–903 (2015).

    ADS 
    Article 

    Google Scholar 

  • Dolan, A. M., de Boer, B., Bernales, J., Hill, D. J. & Haywood, A. M. High climate model dependency of Pliocene Antarctic ice-sheet predictions. Nat. Commun. 9, 2799 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Yan, Q., Zhang, Z. & Wang, H. Investigating uncertainty in the simulation of the Antarctic ice sheet during the mid-Piacenzian. J. Geophys. Res. Atmos. 121, 1559–1574 (2016).

    ADS 
    Article 

    Google Scholar 

  • Pollard, D., DeConto, R. M. & Alley, R. B. Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412, 112–121 (2015). Proposes new ice-sheet-model physics, including parameterizations of marine-ice-cliff instability, in an attempt to reproduce the marine-based retreat of the EAIS during the mid-Pliocene.

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Edwards, T. L. et al. Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature 566, 58–63 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jones, R. S. et al. Cosmogenic nuclides constrain surface fluctuations of an East Antarctic outlet glacier since the Pliocene. Earth Planet. Sci. Lett. 480, 75–86 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bradley, S. L., Siddall, M., Milne, G. A., Masson-Delmotte, V. & Wolff, E. Combining ice core records and ice sheet models to explore the evolution of the East Antarctic ice sheet during the Last Interglacial period. Glob. Planet. Change 100, 278–290 (2013).

    ADS 
    Article 

    Google Scholar 

  • Sutter, J. et al. Limited retreat of the Wilkes Basin ice sheet during the Last Interglacial. Geophys. Res. Lett. 47, e2020GL088131 (2020).

    ADS 
    Article 

    Google Scholar 

  • Mackintosh, A. N. et al. Retreat history of the East Antarctic Ice Sheet since the Last Glacial Maximum. Quat. Sci. Rev. 100, 10–30 (2014). Synthesizes geological and chronological evidence to constrain the history of the EAIS from around 30,000 years ago to the present, highlighting marked regional asynchronicity and that most of the mass loss occurred between about 12,000 and 6,000 years ago.

    ADS 
    Article 

    Google Scholar 

  • Livingstone, S. J. et al. Antarctic palaeo-ice streams. Earth Sci. Rev. 111, 90–128 (2012).

    ADS 
    Article 

    Google Scholar 

  • Anderson, J. B. et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM. Quat. Sci. Rev. 100, 31–54 (2014).

    ADS 
    Article 

    Google Scholar 

  • Hillenbrand, C.-D. et al. Reconstruction of changes in the Weddell Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximum. Quat. Sci. Rev. 100, 111–136 (2014).

    ADS 
    Article 

    Google Scholar 

  • Arndt, J. E., Hillenbrand, C.-D., Grobe, H., Kuhn, G. & Wacker, L. Evidence for a dynamic grounding line in outer Filchner Trough, Antarctica, until the early Holocene. Geology 45, 1035–1038 (2020).

    ADS 
    Article 

    Google Scholar 

  • Lin, Y. et al. A reconciled solution of Meltwater Pulse 1A sources using sea-level fingerprinting. Nat. Commun. 12, 2015 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Weber, M. et al. Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. Nature 510, 134–138 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hall, B. L. et al. Accumulation and marine forcing of ice dynamics in the western Ross Sea during the last deglaciation. Nat. Geosci. 8, 625–628 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • King, C. et al. Delayed maximum and recession of an East Antarctic outlet glacier. Geology 48, 630–634 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jones, R. S. et al. Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability. Nat. Commun. 6, 8910 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • White, D. A., Fink, D. & Gore, D. B. Cosmogenic nuclide evidence for enhanced sensitivity of an East Antarctic ice stream to change during the last deglaciation. Geology 39, 23–26 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Spector, P. et al. Rapid early‐Holocene deglaciation in the Ross Sea, Antarctica. Geophys. Res. Lett. 44, 7817–7825 (2017).

    ADS 
    Article 

    Google Scholar 

  • Jones, R. S., Gudmundsson, G. H., Mackintosh, A. N., McCormack, F. S. & Whitmore, R. J. Ocean-driven and topography-controlled nonlinear glacier retreat during the Holocene: southwestern Ross Sea, Antarctica. Geophys. Res. Lett. 48, e2020GL091454 (2021).

    ADS 

    Google Scholar 

  • McKay, R. et al. Antarctic marine ice-sheet retreat in the Ross Sea during the early Holocene. Geology 44, 7–10 (2016).

    ADS 
    Article 

    Google Scholar 

  • Halberstadt, A. R. W., Simkins, L. M., Greenwood, S. L. & Anderson, J. B. Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica. Cryosphere 10, 1003–1020 (2016).

    ADS 
    Article 

    Google Scholar 

  • Kingslake, J. et al. Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene. Nature 558, 430–434 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mackintosh, A. et al. Retreat of the East Antarctic ice sheet during the last glacial termination. Nat. Geosci. 4, 195–202 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Whitehouse, P. L., Bentley, M. J., & Le Brocq, A. M. A deglacial model for Antarctica: geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment. Quat. Sci. Rev. 32, 1–24 (2012).

    ADS 
    Article 

    Google Scholar 

  • Golledge, N. R. et al. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nat. Commun. 5, 5107 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lowry, D. P. et al. Deglacial grounding-line retreat in the Ross Embayment, Antarctica, controlled by ocean and atmosphere forcing. Sci. Adv. 5, eaav8754 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Thompson, A. F., Stewart, A. L., Spence, P. & Heywood, K. J. The Antarctic Slope Current in a changing climate. Rev. Geophys. 56, 741–770 (2018).

    ADS 
    Article 

    Google Scholar 

  • Morrison, A. K., Hogg, A. Mc. C., England, M. H. & Spence, P. Warm Circumpolar Deep Water transport towards Antarctica driven by local dense water export in canyons. Sci. Adv. 6, eaav2516 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hirano, D. et al. Strong ice-ocean interaction beneath Shirase Glacier Tongue in East Antarctica. Nat. Commun. 11, 4221 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jacobs, S. S. & Giulivi, C. F. Large multidecadal salinity trends near the Pacific–Antarctic continental margin. J. Clim. 23, 4508–4524 (2010).

    ADS 
    Article 

    Google Scholar 

  • Schmidtko, S., Heywood, K. J., Thompson, A. F. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Herraiz–Borreguero, R. et al. Circulation of modified Circumpolar Deep Water and basal melt beneath the Amery Ice Shelf, East Antarctica. J. Geophys. Res. Oceans. 120, 3098–3112 (2015).

    ADS 
    Article 

    Google Scholar 

  • Adusumilli, S., Fricker, H. A., Medley, B., Padman, L. & Siegfried, M. R. Interannual variation in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat. Geosci. 13, 616–620 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Alley, K. E., Scambos, T. A., Siegfried, M. R. & Fricker, H. A. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nat. Geosci. 9, 290–292 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dow, C. F. et al. Basal channels drive active surface hydrology and transverse ice shelf fracture. Sci. Adv. 4, eaa07212 (2018).

    ADS 
    Article 

    Google Scholar 

  • Pelle, T., Morlighem, M. & McCormack, F. S. Aurora Basin, the weak underbelly of East Antarctica. Geophys. Res. Lett. 47, GL086821 (2020).

    Article 

    Google Scholar 

  • Rignot, E. Changes in ice dynamics and mass balance of the Antarctic ice sheet. Philos. Trans. R. Soc. A 364, 1637–1655 (2006).

    ADS 
    Article 

    Google Scholar 

  • Wingham, D. J., Shepherd, A., Muir, A. & Marshall, G. J. Mass balance of the Antarctic ice sheet. Philos. Trans. R. Soc. A 364, 1627–1635 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Shepherd, A. & Wingham, D. Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science 316, 1529–1532 (2007).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Greene, C. A., Blankenship, D. D., Gwyther, E. E., Silvano, A. & van Wijk, E. Wind causes Totten Ice Shelf melt and acceleration. Sci. Adv. 3, e1701681 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Miles, B. W. J. et al. Recent acceleration of Denman Glacier (1972–2017), East Antarctica, driven by grounding line retreat and changes in ice tongue configuration. Cryosphere 15, 663–676 (2021).

    ADS 
    Article 

    Google Scholar 

  • Frezzotti, M., Cimbelli, A. & Ferrigno, J. G. Ice-front change and iceberg behaviour along Oates and George V Coasts, Antarctica, 1912-96. Ann. Glaciol. 27, 643–650 (1998).

    ADS 
    Article 

    Google Scholar 

  • Wang, X., Holland, D. M., Cheng, X. & Gong, P. Grounding and calving cycle of Mertz Ice Tongue revealed by shallow Mertz Bank. Cryosphere 10, 2043–2056 (2016).

    ADS 
    Article 

    Google Scholar 

  • Diez, A. et al. Basal settings control fast ice flow in the Recovery/Slessor/Bailey region, East Antarctica. Geophys. Res. Lett. 45, 2076–2715 (2018).

    Article 

    Google Scholar 

  • Lovell, A. M., Stokes, C. R. & Jamieson, S. S. R. Sub-decadal variations in outlet glacier terminus positions in Victoria Land, Oates Land and George V Land, East Antarctica (1972–2013). Antarct. Sci. 29, 468–483 (2017).

    ADS 
    Article 

    Google Scholar 

  • Nakamura, K., Yamanokuchi, T., Doi, K. & Shubuya, K. Net mass balance calculations for the Shirase Drainage Basin, East Antarctica, using the mass budget method. Polar Sci. 10, 111–122 (2016).

    ADS 
    Article 

    Google Scholar 

  • Kittel, C. et al. Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. Cryosphere 15, 1215–1236 (2021).

    ADS 
    Article 

    Google Scholar 

  • Lenaerts, J. T. M., Medley, B., van den Broeke, M. R. & Wouters, B. Observing and modelling ice sheet surface mass balance. Rev. Geophys. 57, 376–420 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mottram, R. et al. What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates. Cryosphere 15, 3751–3784 (2021).

    ADS 
    Article 

    Google Scholar 

  • Medley, B. & Thomas, E. R. Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. Nat. Clim. Change 9, 34–39 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Thomas, E. R. et al. Regional Antarctic snow accumulation over the past 1000 years. Clim. Past. 13, 1491–1513 (2017).

    Article 

    Google Scholar 

  • Kingslake, J., Ely, J. C., Das, I. & Bell, R. E. Widespread movement of meltwater onto and across Antarctic ice shelves. Nature 544, 349–352 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stokes, C. R., Sanderson, J. E., Miles, B. W. L., Jamieson, S. S. R. & Leeson, A. A. Widespread distribution of supraglacial lakes around the margin of the East Antarctic Ice Sheet. Sci Rep. 9, 13823 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lenaerts, J. T. M. et al. Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf. Nat. Clim. Change 7, 58–62 (2017).

    ADS 
    Article 

    Google Scholar 

  • Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R. & Leeson, A. A. Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica. Cryosphere 14, 4103–4120 (2020).

    ADS 
    Article 

    Google Scholar 

  • Warner, R. C. et al. Rapid formation of an ice doline on Amery Ice Shelf, East Antarctica. Geophys. Res. Lett. 48, e2020GL091095 (2021).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Alley, K. E., Scambos, T. A., Miller, J. Z., Long, D. G. & MacFerrin, M. Quantifying vulnerability of Antarctic ice shelves to hydrofracture using microwave scattering properties. Remote Sens. Environ. 210, 297–306 (2018).

    ADS 
    Article 

    Google Scholar 

  • Lai, C.-Y. et al. Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture. Nature 584, 574–578 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kuipers Munneke, P., Ligtenberg, S. R., Van Den Broeke, M. R. & Vaughan, D. G. Firn air depletion as a precursor of Antarctic ice-shelf collapse. J. Glaciol. 60, 205–214 (2014).

    ADS 
    Article 

    Google Scholar 

  • Vignon, É., Roussel, M.-L., Gorodetskaya, I. V., Genthon, C. & Berne, A. Present and future of rainfall in Antarctica. Geophys. Res. Lett. 48, e2020GL092281 (2021).

    ADS 
    Article 

    Google Scholar 

  • Trusel, L. D. et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat. Geosci. 8, 927–932 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Uotila, P., Lynch, A. H., Cassano, J. J. & Cullather, R. I. Changes in Antarctic net precipitation in the 21st century based on Intergovernmental Panel on Climate Change (IPCC) model scenarios. J. Geophys. Res. 112, D10107 (2007).

    ADS 

    Google Scholar 

  • Bracegirdle, T. J., Connolley, W. M. & Turner, J. Antarctic climate change over the twenty first century. J. Geophys. Res. 113, D03103 (2008).

    ADS 

    Google Scholar 

  • Ligtenberg, S. R. M., van de Berg, W. J., van den Broeke, M. R., Rae, J. G. L. & van Meijgaard, E. Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Clim. Dyn. 41, 867–884 (2013).

    Article 

    Google Scholar 

  • Seroussi, H. et al. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere 14, 3033–3070 (2020). Presents an intercomparison of ice-flow simulations from 13 international groups and finds that East Antarctic mass change (2015–2100) varies from −6.1 cm to +8.3 cm in the simulations, with a marked increase in SMB outweighing the increased ice discharge under most RCP8.5 projections.

    ADS 
    Article 

    Google Scholar 

  • Gilbert, E. & Kittel, C. Surface melt and runoff on Antarctic ice shelves at 1.5 °C, 2 °C, and 4 °C of future warming. Geophys. Res. Lett. 48, E2020GL091733 (2021).

    ADS 
    Article 

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in press).

  • Edwards, T. L. et al. Projected land ice contributions to 21st century sea level rise. Nature 593, 74–82 (2021). Presents statistical emulation of ISMIP6 projections and finds East Antarctic sea-level contributions of −4 to +7 cm from 2015–2100 under SSP1-2.6 and SSP2-4.5 (5–95% range), increasing to −1 to +21 cm under a risk-averse subset of the most sensitive models and inputs.

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lowry, D. P., Krapp, M., Golledge, N. R. & Alevropoulos-Borrill, A. The influence of emissions scenarios on future Antarctic ice loss is unlikely to emerge this century. Commun. Earth Environ. 2, 221 (2021).

    ADS 
    Article 

    Google Scholar 

  • Nowicki, S. et al. Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. Cryosphere 14, 2331–2368 (2020).

    ADS 
    Article 

    Google Scholar 

  • Jourdain, N. C. et al. A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections. Cryosphere 14, 3111–3134 (2020).

    ADS 
    Article 

    Google Scholar 

  • Levermann, A. et al. Projecting Antarctica’s contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2). Earth Syst. Dyn. 11, 35–76 (2020).

    ADS 
    Article 

    Google Scholar 

  • Bassis, J. N., Berg, B., Crawford, A. J. & Benn, D. I. Transition to marine ice cliff Instability controlled by ice thickness gradients and velocity. Science 372, 1342–1344 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Clerc, F., Minchew, B. M. & Behn, M. D. Marine ice cliff Instability mitigated by slow removal of ice shelves. Geophys. Res. Lett. 46, 12108–12116 (2019).

    ADS 
    Article 

    Google Scholar 

  • Crawford, A. J. et al. Marine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterization. Nat. Commun. 12, 2701 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P. & Cooke, R. M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl Acad. Sci. USA. 116, 11195–11200 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hausfather, Z. & Forster, P. Analysis: do COP26 promises keep global warming below 2C? Carbon Brief https://www.carbonbrief.org/analysis-do-cop26-promises-keep-global-warming-below-2c (2021).

  • Ritz, C. et al. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 528, 115–118 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sun, S. et al. Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). J. Glaciol. 66, 891–904 (2020).

    ADS 
    Article 

    Google Scholar 

  • Purich, A. & England, M. H. Historical and future projected warming of Antarctic Shelf Bottom Water in CMIP6 models. Geophys. Res. Lett. 48, e2021GL092752 (2021).

    ADS 
    Article 

    Google Scholar 

  • Bracegirdle, T. J. et al. Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. J. Geophys. Res. Atmos. 118, 547–562 (2013).

    ADS 
    Article 

    Google Scholar 

  • Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601–4610 (2014).

    ADS 
    Article 

    Google Scholar 

  • Naughten, K. A. et al. Future projections of Antarctic ice shelf melting based on CMIP5 scenarios. J. Clim. 31, 5243–5261 (2018).

    ADS 
    Article 

    Google Scholar 

  • Lago, V. & England, M. H. Projected slowdown of Antarctic Bottom Water formation in response to amplified meltwater contributions. J. Clim. 32, 6319–6335 (2019).

    ADS 
    Article 

    Google Scholar 

  • Jourdain, N. C. et al. Ocean circulation and sea-ice thinning induced by melting ice shelves in the Amundsen Sea. J. Geophys. Res. Oceans 122, 2550–2573 (2017).

    ADS 
    Article 

    Google Scholar 

  • Golledge, N. R. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • England, M. H., Hutchinson, D. K., Santoso, A. & Sijp, W. P. Ice–atmosphere feedbacks dominate the response of the climate system to Drake Passage closure. J. Clim. 30, 5775–5790 (2017).

    ADS 
    Article 

    Google Scholar 

  • Purich, A., Cai, W., England, M. H. & Cowan, T. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nat. Commun. 7, 10409 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B. & Katsman, C. A. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 6, 376–379 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sun, S. & Eisenman, I. Observed Antarctic sea ice expansion reproduced in a climate model after correcting biases in sea ice drift velocity. Nat. Commun. 12, 1060 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Darelius, E., Fer, I. & Nicholls, K. W. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water. Nat. Commun. 7, 12300 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hellmer, H., Kauker, F., Timmermann, R., Determann, J. & Rae, J. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485, 225–228 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Paxman, G. J. G. et al. Reconstructions of Antarctic topography since the Eocene–Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 535, 109346 (2019).

    Article 

    Google Scholar 

  • Albrecht, T., Winkelmann, R. & Levermann, A. Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM)–Part 2: parameter ensemble analysis. Cryosphere 14, 633–656 (2020).

    ADS 
    Article 

    Google Scholar 

  • Bentley, M. J. et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 100, 1–9 (2014).

    ADS 
    Article 

    Google Scholar 

  • Mouginot, J., Rignot, E. & Scheuchl, B. Continent-wide, interferometric SAR phase, mapping of Antarctic ice velocity. Geophys. Res. Lett. 46, 9710–9718 (2019).

    ADS 
    Article 

    Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571-3605 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Mazloff, M., Heimbach, P. & Wunsch, C. An eddy-permitting Southern Ocean State Estimate. J. Phys. Oceanogr. 40, 880–899 (2010).

    ADS 
    Article 

    Google Scholar 

  • NOAA National Geophysical Data Center. 2-minute Gridded Global Relief Data (ETOPO2) v2. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5J1012Q (2006).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *