The IMBIE team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018).
Google Scholar
Bamber, J. L., Westaway, R. M., Marzeion, B. & Wouters, B. The land ice contribution to sea level during the satellite era. Environ. Res. Lett. 13, 063008 (2018).
Google Scholar
Gardner, A. S. et al. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. Cryosphere 12, 521–547 (2018). Uses ice-surface-velocity datasets and a SMB model to suggest that, overall, ice discharge from glaciers draining the EAIS was remarkably stable between around 2008 and 2013/2015, whereas those in West Antarctica increased.
Google Scholar
Rignot, E. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. USA 116, 1095–1103 (2019). Uses revised drainage inventory, ice thickness and ice-velocity data, together with a SMB model, to calculate Antarctic Ice Sheet mass balance (1979–2017) and suggest that East Antarctica was an important participant in mass loss.
Google Scholar
Schröder, L. et al. Four decades of surface elevation change of the Antarctic Ice Sheet from multi-mission satellite altimetry. Cryosphere 13, 427–449 (2019).
Google Scholar
Shepherd, A. et al. Trends in Antarctic Ice Sheet elevation and mass. Geophys. Res. Lett. 46, 8174–8183 (2019).
Google Scholar
Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).
Google Scholar
Velicogna, I. et al. Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE Follow-On missions. Geophys. Res. Lett. 47, e2020GL087291 (2020).
Google Scholar
Wang, L., Davis, J. L. & Howat, I. M. Complex patterns of Antarctic ice sheet mass change resolved by time-dependent rate modelling of GRACE and GRACE follow-on observations. Geophys. Res. Lett. 48, e2020GL090961 (2021). Introduces a new approach for analysing satellite gravimetry observations to estimate time-varying mass-change rates in Antarctica and finds a continuously accelerating trend of mass loss in Wilkes Land, East Antarctica, over the past two decades.
Google Scholar
Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 13, 132–137 (2020).
Google Scholar
Pritchard, H. D., Arthern, R. J., Vaughan, D. G. & Edwards, L. A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461, 971–975 (2009).
Google Scholar
Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).
Google Scholar
Depoorter, M. A. et al. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502, 89–92 (2013).
Google Scholar
Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).
Google Scholar
Paolo, F. S., Fricker, H. A. & Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 348, 327–331 (2015).
Google Scholar
Fürst, J. J. et al. The safety band of Antarctic ice shelves. Nat. Clim. Change 6, 479–482 (2016).
Google Scholar
Konrad, H. et al. Net retreat of Antarctic glacier grounding lines. Nat. Geosci. 11, 258–262 (2018).
Google Scholar
Gudmundsson, G. H., Paolo, F. S., Adusumilli, S. & Fricker, H. A. Instantaneous Antarctic ice sheet mass loss driven by thinning ice shelves. Geophys. Res. Lett. 46, 13903–13909 (2019).
Google Scholar
Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. Earth Surf. 112, F03S28 (2007).
Google Scholar
Mercer, J. H. West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271, 321–325 (1978).
Google Scholar
Noble, T. L. et al. The sensitivity of the Antarctic Ice Sheet to a changing climate: past, present and future. Rev. Geophys. 58, e2019RG000663 (2020).
Google Scholar
Sugden, D. E. et al. Preservation of Miocene glacier ice in East Antarctica. Nature 376, 412–414 (1995).
Google Scholar
Davis, C. H., Li, Y., McConnell, J. R., Frey, M. M. & Hanna, E. Snowfall-driven growth in East Antarctic Ice Sheet mitigates recent sea-level rise. Science 308, 1898–1901 (2005). One of the earliest studies to use satellite radar altimetry to show that sea-level rise was mitigated by snowfall-driven growth of the EAIS (1992–2003).
Google Scholar
Zwally, H. J. et al. Mass changes of the Greenland and Antarctic ice sheets and ice shelves and contributions to sea level rise: 1992–2002. J. Glaciol. 51, 509–527 (2005).
Google Scholar
Payne, A. J. et al. Future sea level change under the Coupled Model Intercomparison Project Phase 5 and Phase 6 scenarios from the Greenland and Antarctic ice sheets. Geophys. Res. Lett. 48, e2020GL091741 (2021).
Google Scholar
Greenbaum, J. S. et al. Ocean access to a cavity beneath Totten Glacier in East Antarctica. Nat. Geosci. 8, 294–298 (2015).
Google Scholar
Rintoul, S. R. et al. Ocean heat drives rapid basal melt of the Totten Ice Shelf. Sci. Adv. 2, e1601610 (2016). Presents observations from the calving front of Totten Glacier, East Antarctica, that confirm that warm water enters the ice-shelf cavity through a deep channel, driving high basal-melt rates.
Google Scholar
Silvano, A., Rintoul, S. R., Pena-Molino, B. & Williams, G. D. Distribution of water masses and meltwater on the continental shelf near the Totten and Moscow University ice shelves. J. Geophys. Res. Oceans 122, 2050–2068 (2017).
Google Scholar
Ribeiro, N. et al. Warm modified Circumpolar Deep Water intrusions drive ice shelf melt and inhibit Dense Shelf Water formation in Vincennes Bay, East Antarctica. J. Geophys. Res. Oceans 126, e20202JC016998 (2021).
Google Scholar
Miles, B. W. J., Stokes, C. R. & Jamieson, S. S. R. Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes. Sci. Adv. 2, e1501350 (2016).
Google Scholar
Mengel, M. & Levermann, A. Ice plug prevents irreversible discharge from East Antarctica. Nat. Clim. Change 4, 451–455 (2014).
Google Scholar
Flament, T. & Rémy, F. Dynamic thinning of Antarctic glaciers from along-track repeat radar altimetry. J. Glaciol. 58, 830–840 (2012).
Google Scholar
Li, X., Rignot, E., Morlighem, M., Mouginot, J. & Scheuchl, B. Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013. Geophys. Res. Lett. 42, 8049–8056 (2015).
Google Scholar
Li, X., Rignot, E., Mouginot, J. & Scheuchl, B. Ice flow dynamics and mass loss of Totten Glacier, East Antarctica, from 1989 to 2015. Geophys. Res. Lett. 43, 6366–6373 (2016).
Google Scholar
Brancato, V. et al. Grounding line retreat of Denman Glacier, East Antarctica, measured with COSMO-SkyMed radar interferometry data. Geophys. Res. Lett. 47, e2019GL086291 (2020). Presents observations of rapid grounding-line retreat (1996–2017/18) along a deep trough from an East Antarctic glacier holding 1.5 m sea-level rise equivalent.
Google Scholar
Miles, B. W. J., Stokes, C. R., Vieli, A. & Cox, N. J. C. Rapid, climate-driven changes in outlet glaciers on the Pacific coast of East Antarctica. Nature 500, 563–566 (2013).
Google Scholar
Miles, B. W. J., Stokes, C. R. & Jamieson, S. S. R. Simultaneous disintegration of outlet glaciers in Porpoise Bay (Wilkes Land), East Antarctica, driven by sea-ice break-up. Cryosphere 11, 427–442 (2017).
Google Scholar
Miles, B. W. J., Stokes, C. R. & Jamieson, S. S. R. Velocity increases at Cook Glacier, East Antarctica, linked to ice shelf loss and a subglacial flood event. Cryosphere 12, 3123–3136 (2018).
Google Scholar
Cook, C. P. et al. Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nat. Geosci. 6, 765–769 (2013). Suggests that changes in the provenance of sedimentary material on the Wilkes Land continental shelf can be linked to shifts in the position of the EAIS margin and resulting erosional pathways.
Google Scholar
Cook, C. P. et al. Sea surface temperature control on the distribution of far-travelled Southern Ocean ice-rafted detritus during the Pliocene. Paleoceanography 29, 533–538 (2014).
Google Scholar
Wilson, D. J. et al. Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. Nature 561, 383–386 (2018).
Google Scholar
Blackburn, T. et al. Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial. Nature 583, 554–559 (2020).
Google Scholar
Golledge, N. R. et al. The multi-millennial Antarctic commitment to future sea-level rise. Nature 526, 421–425 (2015). Uses a coupled ice-sheet/ice-shelf model to show that, if atmospheric warming exceeds 1.5 to 2 °C above present, collapse of ice shelves triggers a centennial-scale to millennial-scale response that includes substantial contributions from East Antarctica’s marine basins under ‘high’ scenarios.
Google Scholar
DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).
Google Scholar
Golledge, N. R., Levy, R. H., McKay, R. M. & Naish, T. R. East Antarctic ice sheet most vulnerable to Weddell Sea warming. Geophys. Res. Lett. 44, 2343–2351 (2017).
Google Scholar
DeConto, R. M. et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593, 83–89 (2021).
Google Scholar
Boening, C., Lebsock, M., Landerer, F. & Stephens, G. Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett. 39, L21501 (2012). Reports the addition of 350 Gt of snowfall over the EAIS from 2009 to 2011 from extreme precipitation events, equivalent to a decrease in global mean sea level at a rate of 0.32 mm year−1 over this three-year period.
Google Scholar
Lenaerts, J. T. M. et al. Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys. Res. Lett. 40, 2684–2688 (2013).
Google Scholar
Jones, J. M. et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Change 6, 917–926 (2016).
Google Scholar
Gwyther, D. E. et al. Intrinsic processes drive variability in basal melting of the Totten Glacier Ice Shelf. Nat. Commun. 9, 3141 (2018).
Google Scholar
King, M. A. & Watson, C. S. Antarctic surface mass balance: natural variability, noise, and detecting new trends. Geophys. Res. Lett. 47, e2020GL087493 (2020).
Google Scholar
Zachos, J. C., Breza, J. R. & Wise, S. M. Early Oligocene ice-sheet expansion on Antarctica: stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean. Geology 20, 569–573 (1992).
Google Scholar
Gulick, S. P. S. et al. Initiation and long-term instability of the East Antarctic Ice Sheet. Nature 552, 225–229 (2017).
Google Scholar
Gasson, E. & Keisling, B. A. The Antarctic ice sheet: a paleoclimate modelling perspective. Oceanography 33, 90–100 (2020).
Google Scholar
Naish, T. R. et al. Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary. Nature 413, 719–723 (2001). Presents evidence of cyclic variability in Ross Sea sediment cores that are linked to the oscillating extent of the EAIS during the Oligocene–Miocene transition.
Google Scholar
Levy, R. et al. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene. Proc. Natl Acad. Sci. USA. 113, 3453–3458 (2016).
Google Scholar
Gasson, E., DeConto, R. M., Pollard, D. & Levy, R. H. Dynamic Antarctic ice sheet during the early to mid-Miocene. Proc. Natl Acad. Sci. USA. 113, 3459–3464 (2016).
Google Scholar
Passchier, S. et al. Early and middle Miocene Antarctic glacial history from the sedimentary facies distribution in the AND-2A drill hole, Ross Sea, Antarctica. Geol. Soc. Am. Bull. 123, 2352–2365 (2011).
Google Scholar
Lewis, A. R. et al. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc. Natl Acad. Sci. USA. 105, 10676–10680 (2008).
Google Scholar
Rae, J. W. B. et al. Atmospheric CO2 over the past 66 million years from marine archives. Annu. Rev. Earth Planet. Sci. 49, 609–641 (2021).
Google Scholar
Sangiori, et al. Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene. Nat. Commun. 9, 317 (2018).
Google Scholar
Marshalek, J. W. et al. A large West Antarctic Ice Sheet explains early Neogene sea-level amplitude. Nature 600, 450–455 (2021).
Google Scholar
Miller, K. G. et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 6, eaaz1346 (2020).
Google Scholar
Lee, J.-Y. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) Ch. 4 (Cambridge Univ. Press, in press).
Steinthorsdottir, M. et al. The Miocene: the future of the past. Paleoceanogr. Paleoclimatol. 36, e2020PA004037 (2021).
Martínez-Botí, M. A. et al. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518, 49–54 (2015).
Google Scholar
Haywood, A. M., Dowsett, H. J. & Dolan, A. M. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat. Commun. 7, 10646 (2016).
Google Scholar
Oppenheimer, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) Ch. 4 (Cambridge Univ. Press, 2019).
Dumitru, O. A. et al. Constraints on global mean sea level during Pliocene warmth. Nature 574, 233–236 (2019).
Google Scholar
Grant, G. R. et al. The amplitude and origin of sea-level variability during the Pliocene epoch. Nature 574, 237–241 (2019).
Google Scholar
Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).
Google Scholar
Dolan, A. M. et al. Sensitivity of Pliocene ice sheets to orbital forcing. Palaeogeogr. Palaeoclimatol. Palaeoecol. 309, 98–110 (2011).
Google Scholar
Webb, P. N., Harwood, D. M., McKelvey, B. C., Mercer, J. H. & Stott, L. D. Cenozoic marine sedimentation and ice volume on the East Antarctic craton. Geology 12, 287–291 (1984).
Google Scholar
Scherer, R., DeConto, R., Pollard, D. & Alley, R. B. Windblown Pliocene diatoms and East Antarctic Ice Sheet retreat. Nat. Commun. 7, 12957 (2016).
Google Scholar
Bertram, R. A. et al. Pliocene deglacial event timelines and the biogeochemical response offshore Wilkes Subglacial Basin, East Antarctica. Earth Planet. Sci. Lett. 494, 109–116 (2018).
Google Scholar
Taylor-Silva, B. I. & Riesselman, C. R. Polar frontal migration in the warm late Pliocene: diatom evidence from the Wilkes Land margin, East Antarctica. Paleoceanogr. Paleoclimatol. 33, 76–92 (2018).
Google Scholar
Williams, T. et al. Evidence for iceberg armadas from East Antarctica in the Southern Ocean during the late Miocene and early Pliocene. Earth Planet. Sci. Lett. 290, 351–361 (2010).
Google Scholar
Aitken, A. R. A. et al. Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature 533, 385–389 (2016).
Google Scholar
Ohneiser, C. et al. Warm fjords and vegetated landscapes in early Pliocene East Antarctica. Earth Planet. Sci. Lett. 534, 116045 (2020).
Google Scholar
Passchier, S. Linkages between East Antarctic Ice Sheet extent and Southern Ocean temperatures based on a Pliocene high‐resolution record of ice‐rafted debris off Prydz Bay, East Antarctica. Paleoceanogr. 26, PA4204 (2011).
Google Scholar
Golledge, N. R. et al. Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma. Clim. Past 13, 959–975 (2017).
Google Scholar
De Boer, B. et al. Simulating the Antarctic ice sheet in the late-Pliocene warm period: PLISMIP-ANT, an ice-sheet model intercomparison project. Cryosphere 9, 881–903 (2015).
Google Scholar
Dolan, A. M., de Boer, B., Bernales, J., Hill, D. J. & Haywood, A. M. High climate model dependency of Pliocene Antarctic ice-sheet predictions. Nat. Commun. 9, 2799 (2018).
Google Scholar
Yan, Q., Zhang, Z. & Wang, H. Investigating uncertainty in the simulation of the Antarctic ice sheet during the mid-Piacenzian. J. Geophys. Res. Atmos. 121, 1559–1574 (2016).
Google Scholar
Pollard, D., DeConto, R. M. & Alley, R. B. Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412, 112–121 (2015). Proposes new ice-sheet-model physics, including parameterizations of marine-ice-cliff instability, in an attempt to reproduce the marine-based retreat of the EAIS during the mid-Pliocene.
Google Scholar
Edwards, T. L. et al. Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature 566, 58–63 (2019).
Google Scholar
Jones, R. S. et al. Cosmogenic nuclides constrain surface fluctuations of an East Antarctic outlet glacier since the Pliocene. Earth Planet. Sci. Lett. 480, 75–86 (2017).
Google Scholar
Bradley, S. L., Siddall, M., Milne, G. A., Masson-Delmotte, V. & Wolff, E. Combining ice core records and ice sheet models to explore the evolution of the East Antarctic ice sheet during the Last Interglacial period. Glob. Planet. Change 100, 278–290 (2013).
Google Scholar
Sutter, J. et al. Limited retreat of the Wilkes Basin ice sheet during the Last Interglacial. Geophys. Res. Lett. 47, e2020GL088131 (2020).
Google Scholar
Mackintosh, A. N. et al. Retreat history of the East Antarctic Ice Sheet since the Last Glacial Maximum. Quat. Sci. Rev. 100, 10–30 (2014). Synthesizes geological and chronological evidence to constrain the history of the EAIS from around 30,000 years ago to the present, highlighting marked regional asynchronicity and that most of the mass loss occurred between about 12,000 and 6,000 years ago.
Google Scholar
Livingstone, S. J. et al. Antarctic palaeo-ice streams. Earth Sci. Rev. 111, 90–128 (2012).
Google Scholar
Anderson, J. B. et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM. Quat. Sci. Rev. 100, 31–54 (2014).
Google Scholar
Hillenbrand, C.-D. et al. Reconstruction of changes in the Weddell Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximum. Quat. Sci. Rev. 100, 111–136 (2014).
Google Scholar
Arndt, J. E., Hillenbrand, C.-D., Grobe, H., Kuhn, G. & Wacker, L. Evidence for a dynamic grounding line in outer Filchner Trough, Antarctica, until the early Holocene. Geology 45, 1035–1038 (2020).
Google Scholar
Lin, Y. et al. A reconciled solution of Meltwater Pulse 1A sources using sea-level fingerprinting. Nat. Commun. 12, 2015 (2021).
Google Scholar
Weber, M. et al. Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. Nature 510, 134–138 (2014).
Google Scholar
Hall, B. L. et al. Accumulation and marine forcing of ice dynamics in the western Ross Sea during the last deglaciation. Nat. Geosci. 8, 625–628 (2015).
Google Scholar
King, C. et al. Delayed maximum and recession of an East Antarctic outlet glacier. Geology 48, 630–634 (2020).
Google Scholar
Jones, R. S. et al. Rapid Holocene thinning of an East Antarctic outlet glacier driven by marine ice sheet instability. Nat. Commun. 6, 8910 (2015).
Google Scholar
White, D. A., Fink, D. & Gore, D. B. Cosmogenic nuclide evidence for enhanced sensitivity of an East Antarctic ice stream to change during the last deglaciation. Geology 39, 23–26 (2011).
Google Scholar
Spector, P. et al. Rapid early‐Holocene deglaciation in the Ross Sea, Antarctica. Geophys. Res. Lett. 44, 7817–7825 (2017).
Google Scholar
Jones, R. S., Gudmundsson, G. H., Mackintosh, A. N., McCormack, F. S. & Whitmore, R. J. Ocean-driven and topography-controlled nonlinear glacier retreat during the Holocene: southwestern Ross Sea, Antarctica. Geophys. Res. Lett. 48, e2020GL091454 (2021).
Google Scholar
McKay, R. et al. Antarctic marine ice-sheet retreat in the Ross Sea during the early Holocene. Geology 44, 7–10 (2016).
Google Scholar
Halberstadt, A. R. W., Simkins, L. M., Greenwood, S. L. & Anderson, J. B. Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica. Cryosphere 10, 1003–1020 (2016).
Google Scholar
Kingslake, J. et al. Extensive retreat and re-advance of the West Antarctic Ice Sheet during the Holocene. Nature 558, 430–434 (2018).
Google Scholar
Mackintosh, A. et al. Retreat of the East Antarctic ice sheet during the last glacial termination. Nat. Geosci. 4, 195–202 (2011).
Google Scholar
Whitehouse, P. L., Bentley, M. J., & Le Brocq, A. M. A deglacial model for Antarctica: geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment. Quat. Sci. Rev. 32, 1–24 (2012).
Google Scholar
Golledge, N. R. et al. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nat. Commun. 5, 5107 (2014).
Google Scholar
Lowry, D. P. et al. Deglacial grounding-line retreat in the Ross Embayment, Antarctica, controlled by ocean and atmosphere forcing. Sci. Adv. 5, eaav8754 (2019).
Google Scholar
Thompson, A. F., Stewart, A. L., Spence, P. & Heywood, K. J. The Antarctic Slope Current in a changing climate. Rev. Geophys. 56, 741–770 (2018).
Google Scholar
Morrison, A. K., Hogg, A. Mc. C., England, M. H. & Spence, P. Warm Circumpolar Deep Water transport towards Antarctica driven by local dense water export in canyons. Sci. Adv. 6, eaav2516 (2020).
Google Scholar
Hirano, D. et al. Strong ice-ocean interaction beneath Shirase Glacier Tongue in East Antarctica. Nat. Commun. 11, 4221 (2020).
Google Scholar
Jacobs, S. S. & Giulivi, C. F. Large multidecadal salinity trends near the Pacific–Antarctic continental margin. J. Clim. 23, 4508–4524 (2010).
Google Scholar
Schmidtko, S., Heywood, K. J., Thompson, A. F. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).
Google Scholar
Herraiz–Borreguero, R. et al. Circulation of modified Circumpolar Deep Water and basal melt beneath the Amery Ice Shelf, East Antarctica. J. Geophys. Res. Oceans. 120, 3098–3112 (2015).
Google Scholar
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L. & Siegfried, M. R. Interannual variation in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat. Geosci. 13, 616–620 (2020).
Google Scholar
Alley, K. E., Scambos, T. A., Siegfried, M. R. & Fricker, H. A. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nat. Geosci. 9, 290–292 (2016).
Google Scholar
Dow, C. F. et al. Basal channels drive active surface hydrology and transverse ice shelf fracture. Sci. Adv. 4, eaa07212 (2018).
Google Scholar
Pelle, T., Morlighem, M. & McCormack, F. S. Aurora Basin, the weak underbelly of East Antarctica. Geophys. Res. Lett. 47, GL086821 (2020).
Google Scholar
Rignot, E. Changes in ice dynamics and mass balance of the Antarctic ice sheet. Philos. Trans. R. Soc. A 364, 1637–1655 (2006).
Google Scholar
Wingham, D. J., Shepherd, A., Muir, A. & Marshall, G. J. Mass balance of the Antarctic ice sheet. Philos. Trans. R. Soc. A 364, 1627–1635 (2006).
Google Scholar
Shepherd, A. & Wingham, D. Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science 316, 1529–1532 (2007).
Google Scholar
Greene, C. A., Blankenship, D. D., Gwyther, E. E., Silvano, A. & van Wijk, E. Wind causes Totten Ice Shelf melt and acceleration. Sci. Adv. 3, e1701681 (2017).
Google Scholar
Miles, B. W. J. et al. Recent acceleration of Denman Glacier (1972–2017), East Antarctica, driven by grounding line retreat and changes in ice tongue configuration. Cryosphere 15, 663–676 (2021).
Google Scholar
Frezzotti, M., Cimbelli, A. & Ferrigno, J. G. Ice-front change and iceberg behaviour along Oates and George V Coasts, Antarctica, 1912-96. Ann. Glaciol. 27, 643–650 (1998).
Google Scholar
Wang, X., Holland, D. M., Cheng, X. & Gong, P. Grounding and calving cycle of Mertz Ice Tongue revealed by shallow Mertz Bank. Cryosphere 10, 2043–2056 (2016).
Google Scholar
Diez, A. et al. Basal settings control fast ice flow in the Recovery/Slessor/Bailey region, East Antarctica. Geophys. Res. Lett. 45, 2076–2715 (2018).
Google Scholar
Lovell, A. M., Stokes, C. R. & Jamieson, S. S. R. Sub-decadal variations in outlet glacier terminus positions in Victoria Land, Oates Land and George V Land, East Antarctica (1972–2013). Antarct. Sci. 29, 468–483 (2017).
Google Scholar
Nakamura, K., Yamanokuchi, T., Doi, K. & Shubuya, K. Net mass balance calculations for the Shirase Drainage Basin, East Antarctica, using the mass budget method. Polar Sci. 10, 111–122 (2016).
Google Scholar
Kittel, C. et al. Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. Cryosphere 15, 1215–1236 (2021).
Google Scholar
Lenaerts, J. T. M., Medley, B., van den Broeke, M. R. & Wouters, B. Observing and modelling ice sheet surface mass balance. Rev. Geophys. 57, 376–420 (2019).
Google Scholar
Mottram, R. et al. What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates. Cryosphere 15, 3751–3784 (2021).
Google Scholar
Medley, B. & Thomas, E. R. Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. Nat. Clim. Change 9, 34–39 (2019).
Google Scholar
Thomas, E. R. et al. Regional Antarctic snow accumulation over the past 1000 years. Clim. Past. 13, 1491–1513 (2017).
Google Scholar
Kingslake, J., Ely, J. C., Das, I. & Bell, R. E. Widespread movement of meltwater onto and across Antarctic ice shelves. Nature 544, 349–352 (2017).
Google Scholar
Stokes, C. R., Sanderson, J. E., Miles, B. W. L., Jamieson, S. S. R. & Leeson, A. A. Widespread distribution of supraglacial lakes around the margin of the East Antarctic Ice Sheet. Sci Rep. 9, 13823 (2019).
Google Scholar
Lenaerts, J. T. M. et al. Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf. Nat. Clim. Change 7, 58–62 (2017).
Google Scholar
Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R. & Leeson, A. A. Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica. Cryosphere 14, 4103–4120 (2020).
Google Scholar
Warner, R. C. et al. Rapid formation of an ice doline on Amery Ice Shelf, East Antarctica. Geophys. Res. Lett. 48, e2020GL091095 (2021).
Google Scholar
Alley, K. E., Scambos, T. A., Miller, J. Z., Long, D. G. & MacFerrin, M. Quantifying vulnerability of Antarctic ice shelves to hydrofracture using microwave scattering properties. Remote Sens. Environ. 210, 297–306 (2018).
Google Scholar
Lai, C.-Y. et al. Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture. Nature 584, 574–578 (2020).
Google Scholar
Kuipers Munneke, P., Ligtenberg, S. R., Van Den Broeke, M. R. & Vaughan, D. G. Firn air depletion as a precursor of Antarctic ice-shelf collapse. J. Glaciol. 60, 205–214 (2014).
Google Scholar
Vignon, É., Roussel, M.-L., Gorodetskaya, I. V., Genthon, C. & Berne, A. Present and future of rainfall in Antarctica. Geophys. Res. Lett. 48, e2020GL092281 (2021).
Google Scholar
Trusel, L. D. et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat. Geosci. 8, 927–932 (2015).
Google Scholar
Uotila, P., Lynch, A. H., Cassano, J. J. & Cullather, R. I. Changes in Antarctic net precipitation in the 21st century based on Intergovernmental Panel on Climate Change (IPCC) model scenarios. J. Geophys. Res. 112, D10107 (2007).
Google Scholar
Bracegirdle, T. J., Connolley, W. M. & Turner, J. Antarctic climate change over the twenty first century. J. Geophys. Res. 113, D03103 (2008).
Google Scholar
Ligtenberg, S. R. M., van de Berg, W. J., van den Broeke, M. R., Rae, J. G. L. & van Meijgaard, E. Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Clim. Dyn. 41, 867–884 (2013).
Google Scholar
Seroussi, H. et al. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere 14, 3033–3070 (2020). Presents an intercomparison of ice-flow simulations from 13 international groups and finds that East Antarctic mass change (2015–2100) varies from −6.1 cm to +8.3 cm in the simulations, with a marked increase in SMB outweighing the increased ice discharge under most RCP8.5 projections.
Google Scholar
Gilbert, E. & Kittel, C. Surface melt and runoff on Antarctic ice shelves at 1.5 °C, 2 °C, and 4 °C of future warming. Geophys. Res. Lett. 48, E2020GL091733 (2021).
Google Scholar
Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in press).
Edwards, T. L. et al. Projected land ice contributions to 21st century sea level rise. Nature 593, 74–82 (2021). Presents statistical emulation of ISMIP6 projections and finds East Antarctic sea-level contributions of −4 to +7 cm from 2015–2100 under SSP1-2.6 and SSP2-4.5 (5–95% range), increasing to −1 to +21 cm under a risk-averse subset of the most sensitive models and inputs.
Google Scholar
Lowry, D. P., Krapp, M., Golledge, N. R. & Alevropoulos-Borrill, A. The influence of emissions scenarios on future Antarctic ice loss is unlikely to emerge this century. Commun. Earth Environ. 2, 221 (2021).
Google Scholar
Nowicki, S. et al. Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. Cryosphere 14, 2331–2368 (2020).
Google Scholar
Jourdain, N. C. et al. A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections. Cryosphere 14, 3111–3134 (2020).
Google Scholar
Levermann, A. et al. Projecting Antarctica’s contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2). Earth Syst. Dyn. 11, 35–76 (2020).
Google Scholar
Bassis, J. N., Berg, B., Crawford, A. J. & Benn, D. I. Transition to marine ice cliff Instability controlled by ice thickness gradients and velocity. Science 372, 1342–1344 (2021).
Google Scholar
Clerc, F., Minchew, B. M. & Behn, M. D. Marine ice cliff Instability mitigated by slow removal of ice shelves. Geophys. Res. Lett. 46, 12108–12116 (2019).
Google Scholar
Crawford, A. J. et al. Marine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterization. Nat. Commun. 12, 2701 (2021).
Google Scholar
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P. & Cooke, R. M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl Acad. Sci. USA. 116, 11195–11200 (2019).
Google Scholar
Hausfather, Z. & Forster, P. Analysis: do COP26 promises keep global warming below 2C? Carbon Brief https://www.carbonbrief.org/analysis-do-cop26-promises-keep-global-warming-below-2c (2021).
Ritz, C. et al. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations. Nature 528, 115–118 (2015).
Google Scholar
Sun, S. et al. Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). J. Glaciol. 66, 891–904 (2020).
Google Scholar
Purich, A. & England, M. H. Historical and future projected warming of Antarctic Shelf Bottom Water in CMIP6 models. Geophys. Res. Lett. 48, e2021GL092752 (2021).
Google Scholar
Bracegirdle, T. J. et al. Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. J. Geophys. Res. Atmos. 118, 547–562 (2013).
Google Scholar
Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601–4610 (2014).
Google Scholar
Naughten, K. A. et al. Future projections of Antarctic ice shelf melting based on CMIP5 scenarios. J. Clim. 31, 5243–5261 (2018).
Google Scholar
Lago, V. & England, M. H. Projected slowdown of Antarctic Bottom Water formation in response to amplified meltwater contributions. J. Clim. 32, 6319–6335 (2019).
Google Scholar
Jourdain, N. C. et al. Ocean circulation and sea-ice thinning induced by melting ice shelves in the Amundsen Sea. J. Geophys. Res. Oceans 122, 2550–2573 (2017).
Google Scholar
Golledge, N. R. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).
Google Scholar
England, M. H., Hutchinson, D. K., Santoso, A. & Sijp, W. P. Ice–atmosphere feedbacks dominate the response of the climate system to Drake Passage closure. J. Clim. 30, 5775–5790 (2017).
Google Scholar
Purich, A., Cai, W., England, M. H. & Cowan, T. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nat. Commun. 7, 10409 (2016).
Google Scholar
Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B. & Katsman, C. A. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 6, 376–379 (2013).
Google Scholar
Sun, S. & Eisenman, I. Observed Antarctic sea ice expansion reproduced in a climate model after correcting biases in sea ice drift velocity. Nat. Commun. 12, 1060 (2021).
Google Scholar
Darelius, E., Fer, I. & Nicholls, K. W. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water. Nat. Commun. 7, 12300 (2016).
Google Scholar
Hellmer, H., Kauker, F., Timmermann, R., Determann, J. & Rae, J. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485, 225–228 (2012).
Google Scholar
Paxman, G. J. G. et al. Reconstructions of Antarctic topography since the Eocene–Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 535, 109346 (2019).
Google Scholar
Albrecht, T., Winkelmann, R. & Levermann, A. Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM)–Part 2: parameter ensemble analysis. Cryosphere 14, 633–656 (2020).
Google Scholar
Bentley, M. J. et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 100, 1–9 (2014).
Google Scholar
Mouginot, J., Rignot, E. & Scheuchl, B. Continent-wide, interferometric SAR phase, mapping of Antarctic ice velocity. Geophys. Res. Lett. 46, 9710–9718 (2019).
Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).
Google Scholar
Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).
Google Scholar
Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571-3605 (2020).
Google Scholar
Mazloff, M., Heimbach, P. & Wunsch, C. An eddy-permitting Southern Ocean State Estimate. J. Phys. Oceanogr. 40, 880–899 (2010).
Google Scholar
NOAA National Geophysical Data Center. 2-minute Gridded Global Relief Data (ETOPO2) v2. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5J1012Q (2006).