Strange IndiaStrange India


  • Konikow, L. F. & Kendy, E. Groundwater depletion: a global problem. Hydrol. J. 13, 317–320 (2005).

    ADS 
    CAS 

    Google Scholar 

  • Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37, L20402 (2010).

    ADS 

    Google Scholar 

  • Gleeson, T., Wada, Y., Bierkens, M. F. & Van Beek, L. P. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Werner, A. D. et al. An initial inventory and indexation of groundwater mega-depletion cases. Water Resour. Manag. 27, 507–533 (2013).

    Google Scholar 

  • Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

    ADS 

    Google Scholar 

  • Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T. & Eicker, A. Global‐scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour. Res. 50, 5698–5720 (2014).

    ADS 

    Google Scholar 

  • Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51, 5217–5238 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alley, W. M. & Alley, R. High and Dry: Meeting the Challenges of the World’s Growing Dependence on Groundwater (Yale Univ. Press, 2017).

  • Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scanlon, B. R. et al. Global water resources and the role of groundwater in a resilient water future. Nature Rev. Earth Environ. 4, 87–101 (2023).

    ADS 

    Google Scholar 

  • Werner, A. D. et al. Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Res. 51, 3–26 (2013).

    Google Scholar 

  • Shirzaei, M. et al. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2, 40–58 (2021).

    ADS 

    Google Scholar 

  • Herrera-García, G. et al. Mapping the global threat of land subsidence. Science 371, 34–36 (2021).

    ADS 
    PubMed 

    Google Scholar 

  • Barlow, P. M. & Leake, S. A. Streamflow depletion by wells—understanding and managing the effects of groundwater pumping on streamflow. U.S. Geological Survey Circular 1376. https://doi.org/10.3133/cir1376 (2012).

  • Döll, P. et al. Impact of water withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn. 59, 143–156 (2012).

    Google Scholar 

  • de Graaf, I. E., Gleeson, T., Sutanudjaja, E. H. & Bierkens, M. F. Environmental flow limits to global groundwater pumping. Nature 574, 90–94 (2019).

    ADS 
    PubMed 

    Google Scholar 

  • Jasechko, S. & Perrone, D. Global groundwater wells at risk of running dry. Science 372, 418–421 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Margat, J. & van der Gun, J. Groundwater Around the World: A Geographic Synopsis (CRC, 2013).

  • Rodell, M. & Reager, J. T. Water cycle science enabled by the GRACE and GRACE-FO satellite missions. Nat. Water 1, 47–59 (2023).

    Google Scholar 

  • Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572, 230–234 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shamsudduha, M. et al. The Bengal Water Machine: quantified freshwater capture in Bangladesh. Science 377, 1315–1319 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Scanlon, B. R., Reedy, R. C., Faunt, C. C., Pool, D. & Uhlman, K. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona. Environ. Res. Lett. 11, 035013 (2016).

    ADS 

    Google Scholar 

  • Long, D. et al. (2020). South-to-North Water Diversion stabilizing Beijing’s groundwater levels. Nat. Commun. 11, 3665 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ayres, A. B., Meng, K. C. & Plantinga, A. J. Do environmental markets improve on open access? Evidence from California groundwater rights. J. Political Econ. 129, 2817–2860 (2021).

    Google Scholar 

  • Buapeng, S. & Foster, S. Controlling groundwater abstraction and related environmental degradation in metropolitan Bangkok – Thailand. World Bank Case Profile Collection No. 20. https://documents1.worldbank.org/curated/en/750761468304831965/pdf/518250BRI0Box31GWMATE1CP1201Bangkok.pdf (World Bank, 2008).

  • Tang, W. et al. Land subsidence and rebound in the Taiyuan basin, northern China, in the context of inter-basin water transfer and groundwater management. Remote Sens. Environ. 269, 112792 (2022).

    Google Scholar 

  • Taylor, R. G. et al. Groundwater and climate change. Nat. Clim. Change 3, 322–329 (2013).

    ADS 

    Google Scholar 

  • Baig, M. B., Alotibi, Y., Straquadine, G. S. & Alataway, A. in Water Policies in MENA Countries (ed. Zekri, S.) 135–160 (Springer, 2020).

  • Karimi, H. & Alimoradi, S. Impacts of water transfer from Karkheh Dam on rising of groundwater in Dasht-e-Abass Plain, Ilam Province. Res. Earth Sci. 8, 33–44 (2017).

    Google Scholar 

  • Winter, T. C., Harvey, J. W., Franke, O. L. & Alley, W. M. Ground water and surface water: a single resource. U.S. Geological Survey Circular 1139. https://doi.org/10.3133/cir1139 (1998).

  • Li, M. G. et al. Effects of groundwater exploitation and recharge on land subsidence and infrastructure settlement patterns in Shanghai. Eng. Geol. 282, 105995 (2021).

    Google Scholar 

  • Rotzoll, K. & Fletcher, C. H. Assessment of groundwater inundation as a consequence of sea-level rise. Nat. Clim. Change 3, 477–481 (2013).

    ADS 

    Google Scholar 

  • Qureshi, A. S., McCornick, P. G., Qadir, M. & Aslam, Z. Managing salinity and waterlogging in the Indus Basin of Pakistan. Agric. Water Manag. 95, 1–10 (2008).

    Google Scholar 

  • Foster, S. S. D. & Chilton, P. J. Groundwater: the processes and global significance of aquifer degradation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 1957–1972 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allison, G. B. et al. Land clearance and river salinisation in the western Murray Basin, Australia. J. Hydrol. 119, 1–20 (1990).

    ADS 
    CAS 

    Google Scholar 

  • Favreau, G. et al. Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resour. Res. 45, W00A16 (2009).

    Google Scholar 

  • Wendt, D. E., Van Loon, A. F., Scanlon, B. R. & Hannah, D. M. Managed aquifer recharge as a drought mitigation strategy in heavily-stressed aquifers. Environ. Res. Lett. 16, 014046 (2021).

    ADS 

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO). Trees, forests and land use in drylands: the first global assessment. FAO Forestry Paper No. 184. https://www.fao.org/dryland-assessment/en/ (FAO, 2019).

  • Zomer, R. J., Trabucco, A., Bossio, D. A., van Straaten, O. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).

    Google Scholar 

  • Buchhorn, M. et al. Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2015: Globe (V3.0.1). Zenodo. https://doi.org/10.5281/zenodo.3939038 (2020).

  • Berghuijs, W. R., Luijendijk, E., Moeck, C., van der Velde, Y. & Allen, S. T. Global recharge data set indicates strengthened groundwater connection to surface fluxes. Geophys. Res. Lett. 49, e2022GL099010 (2022).

    ADS 

    Google Scholar 

  • Opie, S., Taylor, R. G., Brierley, C. M., Shamsudduha, M. & Cuthbert, M. O. Climate–groundwater dynamics inferred from GRACE and the role of hydraulic memory. Earth Syst. Dyn. 11, 775–791 (2020).

    ADS 

    Google Scholar 

  • Konikow, L. F. & Leake, S. A. Depletion and capture: revisiting “the source of water derived from wells”. Groundwater 52, 100–111 (2014).

    CAS 

    Google Scholar 

  • Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Change 9, 358–369 (2019).

    ADS 

    Google Scholar 

  • Rodell, M. & Li, B. Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. Nat. Water 1, 241–248 (2023).

    Google Scholar 

  • Liu, P. W. et al. Groundwater depletion in California’s Central Valley accelerates during megadrought. Nat. Commun. 13, 7825 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. 115, E1080–E1089 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bierkens, M. F. & Wada, Y. Non-renewable groundwater use and groundwater depletion: a review. Environ. Res. Lett. 14, 063002 (2019).

    ADS 

    Google Scholar 

  • Li, B. et al. Global GRACE data assimilation for groundwater and drought monitoring: advances and challenges. Water Resour. Res. 55, 7564–7586 (2019).

    ADS 

    Google Scholar 

  • Xu, L. et al. From coarse resolution to practical solution: GRACE as a science communication and policymaking tool for sustainable groundwater management. J. Hydrol. 623, 129845 (2023).

    CAS 

    Google Scholar 

  • Jain, M. et al. Groundwater depletion will reduce cropping intensity in India. Sci. Adv. 7, eabd2849 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abbasnejad, A., Mirzaie, A., Derakhshani, R. & Esmaeilzadeh, E. Arsenic in groundwaters of the alluvial aquifer of Bardsir plain, SE Iran. Environ. Earth Sci. 69, 2549–2557 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Abiye, T. A. Groundwater need assessment ORASECOM. Africa Groundwater Network (AGWNET) report (2012).

  • Abotalib, A. Z., Heggy, E., Scabbia, G. & Mazzoni, A. Groundwater dynamics in fossil fractured carbonate aquifers in Eastern Arabian Peninsula: a preliminary investigation. J. Hydrol. 571, 460–470 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Adams, G. P. & Bergman, D. L. Geohydrology of alluvium and terrace deposits of the Cimarron River from freedom to Guthrie, Oklahoma. U.S. Geological Survey Water-Resources Investigations Report 95-4066. https://pubs.usgs.gov/wri/1995/4066/report.pdf (1996).

  • Adelana, S., Xu, Y. & Vrbka, P. A. A conceptual model for the development and management of the Cape Flats aquifer, South Africa. Water SA 36, 461–474 (2010).

    Google Scholar 

  • Adinehvand, R., Mozaffarizadeh, J., Sajadi, Z. & Ansari, A. Identifying major factors affecting groundwater quality of the Galehdar plain, south of Fars province. Res. Earth Sci. 10, 1–14 (2019).

    Google Scholar 

  • Afshin, A. A. & Motlagh, K. S. The study of sharp decline in groundwater in Kohgiluyeh and Boyer province with special attention to the Calacho plain-Dehdasht-iran. International Journal of Research Publications. https://ijrp.org/paper-detail/67To (2018).

  • Agarwal, M., Gupta, S. K., Deshpande, R. D. & Yadava, M. G. Helium, radon and radiocarbon studies on a regional aquifer system of the North Gujarat–Cambay region, India. Chem. Geol. 228, 209–232 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Aghlmand, R. & Abbasi, A. Application of MODFLOW with boundary conditions analyses based on limited available observations: a case study of Birjand plain in East Iran. Water 11, 1904 (2019).

    Google Scholar 

  • Ahmadi, A. & Aberoumand, M. Vulnerability of Khash-Plain aquifer, eastern Iran, to pollution using geographic information system (GIS). Geotech. Geol. 5, 1–11 (2009).

    Google Scholar 

  • Ahmadvand, M. & Karami, E. A social impact assessment of the floodwater spreading project on the Gareh-Bygone plain in Iran: a causal comparative approach. Environ. Impact Assess. Rev. 29, 126–136 (2009).

    Google Scholar 

  • Akhavan, S. et al. Application of SWAT model to investigate nitrate leaching in Hamadan–Bahar Watershed, Iran. Agric. Ecosyst. Environ. 139, 675–688 (2010).

    CAS 

    Google Scholar 

  • Alatorre, L. C., Díaz, R. E., Miramontes, S., Bravo, L. C. & Sánchez, E. Spatial and temporal evolution of the static water level of the Cuauhtemoc Aquifer during the years 1973, 1991 and 2000: a geographical approach. J. Geogr. Inf. Syst. 6, 572–584 (2014).

    Google Scholar 

  • Alberta Environment. Cold Lake-Beaver River Basin. Groundwater quality state of the basin report. https://open.alberta.ca/dataset/1566ed51-e765-468d-99d5-cfb9f08be4d5/resource/e1317376-a2d4-4f93-8834-b95963c3daf7/download/2006-coldlake-beavergroundwaterreport-2006.pdf (2006).

  • Aldaya, M. M. & Llamas, M. R. Water footprint analysis for the Guadiana river basin (vol. 3). https://waterfootprint.org/media/downloads/Report35-WaterFootprint-Guadiana.pdf (2008).

  • Ali, R. et al. Potential climate change impacts on groundwater resources of south-western Australia. J. Hydrol. 475, 456–472 (2012).

    ADS 

    Google Scholar 

  • Alimoradi, J. et al. Data on corrosive water in the sources and distribution network of drinking water in north of Iran. Data Brief 17, 105–118 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Alizadeh, M. R., Nikoo, M. R. & Rakhshandehroo, G. R. Hydro-environmental management of groundwater resources: a fuzzy-based multi-objective compromise approach. J. Hydrol. 551, 540–554 (2017).

    ADS 

    Google Scholar 

  • Allander, K. K., Niswonger, R. G. & Jeton, A. E. Simulation of the Lower Walker River Basin hydrologic system, west-central Nevada, using PRMS and MODFLOW models. U.S. Geological Survey Scientific Investigations Report 2014-5190. https://pubs.usgs.gov/sir/2014/5190/pdf/sir2014-5190.pdf (2014).

  • Alvarado, J. A. C., Pačes, T. & Purtschert, R. Dating groundwater in the Bohemian Cretaceous Basin: understanding tracer variations in the subsurface. Appl. Geochem. 29, 189–198 (2013).

    ADS 

    Google Scholar 

  • Amin, M., Khan, M. R. & Jamil, A. in Advances in Remote Sensing and Geo Informatics Applications. CAJG 2018. Advances in Science, Technology & Innovation (eds El-Askary, H., Lee, S., Heggy, E. & Pradhan, B.) 299–304 (Springer, 2018).

  • Amiri, V., Rezaei, M. & Sohrabi, N. Groundwater quality assessment using entropy weighted water quality index (EWQI) in Lenjanat, Iran. Environ. Earth Sci. 72, 3479–3490 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Amirkhizi, M. T., Delirhasannia, R., Haghighatjou, P. & Majnooni Heris, A. Determining water quality of agricultural wells for use in pressurized irrigation systems of Sarab plain, Iran. Water Soil Sci. 29, 185–198 (2019).

    Google Scholar 

  • Amouzegari, P., Panahi, M., Mirnia, S. K. & Daneshi, A. Estimation of preservation value of groundwater resources from the villagers’ perspective in Alashtar Watershed, Iran. Watershed Eng. Manag. 12, 57–71 (2020).

    Google Scholar 

  • Anand, A. V. S. S. Ground Water Brochure Nellore District, Andhra Pradesh. Central Ground Water Board, Ministry of Water Resources, Government of India. http://cgwb.gov.in/old_website/District_Profile/AP_districtProfiles.html (2009).

  • Anderholm, S. K. Hydrogeology of the Socorro and La Jencia Basins, Socorro County, New Mexico. U.S. Geological Survey Water-Resources Investigations Report 84-4342. https://pubs.usgs.gov/wri/1984/4342/report.pdf (1984).

  • Anders, R., Mendez, G. O., Futa, K. & Danskin, W. R. A geochemical approach to determine sources and movement of saline groundwater in a coastal aquifer. Groundwater 52, 756–768 (2014).

    CAS 

    Google Scholar 

  • Andreu, J. M., Alcalá, F. J., Vallejos, A. & Pulido-Bosch, A. Recharge to mountainous carbonated aquifers in SE Spain: different approaches and new challenges. J. Arid. Environ. 75, 1262–1270 (2011).

    ADS 

    Google Scholar 

  • Anning, D. W. Conceptual understanding and groundwater quality of selected basin-fill aquifers in the Southwestern United States. Section 7.—Conceptual understanding and groundwater quality of the basin-fill aquifer in the West Salt River Valley, Arizona. U.S. Geological Survey Professional Paper 1781. https://pubs.usgs.gov/pp/1781/pdf/pp1781_section7.pdf (2014).

  • Ansari, M. A., Noble, J., Deodhar, A. & Kumar, U. S. Isotope hydrogeochemical models for assessing the hydrological processes in a part of the largest continental flood basalts province of India. Geosci. Front. 13, 101336 (2022).

    CAS 

    Google Scholar 

  • Arabameri, A., Rezaei, K., Cerda, A., Lombardo, L. & Rodrigo-Comino, J. GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Sci. Total Environ. 658, 160–177 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Arabameri, A., Roy, J., Saha, S., Blaschke, T., Ghorbanzadeh, O. & Tien Bui, D. Application of probabilistic and machine learning models for groundwater potentiality mapping in Damghan sedimentary plain, Iran. Remote Sens. 11, 3015 (2019).

    ADS 

    Google Scholar 

  • Araneda, M., Avendaño, M. S. & Del Río, G. D. Modelo estructural de la cuenca de Santiago, Chile y su relación con la hidrogeología. Rev. Geofís. 62, 29–48 (2010).

    Google Scholar 

  • Arasteh, S. M. & Shoaei, S. M. An assessment of the effects of excessive groundwater abstraction on the quality of groundwater resources of the Zanjan Plain, Iran. Environ. Earth Sci. 79, 523 (2020).

    ADS 

    Google Scholar 

  • Arauzo, M. & Martínez-Bastida, J. J. Environmental factors affecting diffuse nitrate pollution in the major aquifers of central Spain: groundwater vulnerability vs. groundwater pollution. Environ. Earth Sci. 73, 8271–8286 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Aref, F. & Roosta, R. Assessment of groundwater quality and hydrochemical characteristics in Farashband plain, Iran. Arab. J. Geosci. 9, 752 (2016).

    Google Scholar 

  • Argamasilla Ruiz, M. & Andreo-Navarro, B. Resultados preliminares de la investigación hidrogeológica del acuífero aluvial del río Guadaiza (Marbella, España). https://riuma.uma.es/xmlui/handle/10630/8767 (2015).

  • Arizona Department of Water Resources. The Groundwater Flow Model of the Willcox Basin. Arizona Department of Water Resources report. https://www.azwater.gov/sites/default/files/2022-12/Willcox_Report_2018.pdf (2018).

  • Armengol, S., Manzano, M., Ayora, C. & Martínez, S. The origin of groundwater salinity in the Matanza-Riachuelo aquifer system, Argentina. Groundw. Sustain. Dev. 20, 100879 (2023).

    Google Scholar 

  • Arrate, I. et al. Groundwater pollution in Quaternary aquifer of Vitoria–Gasteiz (Basque Country, Spain). Influence of agricultural activities and water-resource management. Environ. Geol. 30, 257–265 (1997).

    CAS 

    Google Scholar 

  • Arreguín, F., López-Pérez, M. & Galván, R. Acuíferos transfronterizos en México: análisis normativo hacia una estrategia de manejo. Tecnol. Cienc. Agua 9, 1–38 (2018).

    Google Scholar 

  • Arthur, J. K. & Taylor, R. E. Ground-water flow analysis of the Mississippi embayment aquifer system, South-Central United States. U.S. Geological Survey Professional Paper 1416-1. https://pubs.usgs.gov/pp/1416i/report.pdf (1998).

  • Aryafar, A., Khosravi, V. & Hooshfar, F. GIS-based comparative characterization of groundwater quality of Tabas basin using multivariate statistical techniques and computational intelligence. Int. J. Environ. Sci. Technol. 16, 6277–6290 (2019).

    CAS 

    Google Scholar 

  • Aryafar, A., Khosravi, V., Zarepourfard, H. & Rooki, R. Evolving genetic programming and other AI-based models for estimating groundwater quality parameters of the Khezri plain, Eastern Iran. Environ. Earth Sci. 78, 69 (2019).

    ADS 

    Google Scholar 

  • Asadi, F., Soltanian, M., Mohmmadi, A., Setareh, P. & Khezri, S. M. Geographical zoning physicochemical quality change in groundwater catchment Gharehsou ten-year period 2003-2012. Biosci. Biotechnol. Res. Asia 12, 507–515 (2015).

    Google Scholar 

  • Asadi, N., Kaki, M. & Jamoor, R. Groundwater level decline and compensating withdrawal plan in Aleshtar plain, Lorestan province, Iran. J. Nat. Environ. Hazards 5, 107–124 (2016).

    Google Scholar 

  • Asgharinia, S. & Petroselli, A. A comparison of statistical methods for evaluating missing data of monitoring wells in the Kazeroun Plain, Fars Province, Iran. Groundw. Sustain. Dev. 10, 100294 (2020).

    Google Scholar 

  • Ashraf, A. & Ahmad, Z. Regional groundwater flow modelling of Upper Chaj Doab of Indus Basin, Pakistan using finite element model (Feflow) and geoinformatics. Geophys. J. Int. 173, 17–24 (2008).

    ADS 

    Google Scholar 

  • Ashraf, A., Ahmad, Z. & Akhter, G. in Groundwater of South Asia (ed. Mukherjee, A.) 593–611 (Springer, 2018).

  • Ashworth, J. B. Bone Spring-Victorio Peak aquifer of the Dell Valley region of Texas. Texas Water Development Board report. https://www.twdb.texas.gov/publications/reports/numbered_reports/doc/R356/Chapter10.pdf (2001).

  • Aucott, W. R. Hydrology of the Southeastern Coastal Plain aquifer system in South Carolina and parts of Georgia and North Carolina. U.S. Geological Survey Professional Paper 1410-E. https://pubs.usgs.gov/pp/1410e/report.pdf (1996).

  • Australian Government. Sydney Basin bioregion assessment. https://www.bioregionalassessments.gov.au/assessments/sydney-basin-bioregion (2018).

  • Avand, M. & Ekhtesasi, M. R. The effect of geological formations on the quality and quantity of groundwater (case study: Imamzadeh Jafar Gachsaran plain). Sustain. Earth Rev. 1, 1–6 (2020).

    Google Scholar 

  • Awadh, S. M., Al-Mimar, H. & Yaseen, Z. M. Groundwater availability and water demand sustainability over the upper mega aquifers of Arabian Peninsula and west region of Iraq. Environ. Dev. Sustain. 23, 1–21 (2020).

    Google Scholar 

  • Azizi, F., Moghaddam, A. A., Nazemi, A. & Gorgij, A. D. Introducing a novel method in evaluation of groundwater hydrochemical characteristics, GWQISI index: case study—Malekan Aquifer, Northwest of Iran. Arab. J. Geosci. 12, 343 (2019).

    Google Scholar 

  • Azma, A. et al. Statistical modeling for spatial groundwater potential map based on GIS technique. Sustainability 13, 3788 (2021).

    CAS 

    Google Scholar 

  • Babaee, S. et al. Land subsidence from interferometric SAR and groundwater patterns in the Qazvin plain, Iran. Int. J. Remote Sens. 41, 4780–4798 (2020).

    Google Scholar 

  • Bachand, P. A. M., Birt, K. S. & Bachand, S. M. Groundwater relationships to pumping, precipitation and geology in high-elevation basin, Sierra Valley, CA. Report to Feather River Land. https://aquadocs.org/handle/1834/41185 (2020).

  • Bachman, L. J., Shedlock, R. J. & Phillips, P. J. Ground-water-quality assessment of the Delmarva Peninsula, Delaware, Maryland, and Virginia. U.S. Geological Survey Open-File Report 87-112. https://pubs.usgs.gov/of/1987/0112/report.pdf (1987).

  • Bachman, S. Goleta groundwater basin groundwater management plan. Goleta Water District. https://www.goletawater.com/doc/1194/ (2010).

  • Back, W. Geology and ground-water features of the Smith River Plain Del Norte County California. U.S. Geological Survey Water-Supply Paper 1254. https://pubs.usgs.gov/wsp/1254/report.pdf (1957).

  • Back, W. et al. Process and rate of dedolomitization: mass transfer and 14C dating in a regional carbonate aquifer. Geol. Soc. Am. Bull. 94, 1415–1429 (1983).

    ADS 
    CAS 

    Google Scholar 

  • Baghapour, M. A. et al. Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran. J. Environ. Health Sci. Eng. 14, 13 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bagheri, R., Bagheri, F. & Eggenkamp, H. G. M. Origin of groundwater salinity in the Fasa Plain, southern Iran, hydrogeochemical and isotopic approaches. Environ. Earth Sci. 76, 662 (2017).

    ADS 

    Google Scholar 

  • Bagheri, R., Nosrati, A., Jafari, H., Eggenkamp, H. G. M. & Mozafari, M. Overexploitation hazards and salinization risks in crucial declining aquifers, chemo-isotopic approaches. J. Hazard. Mater. 369, 150–163 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Bahrami, M., Khaksar, E. & Khaksar, E. Spatial variation assessment of groundwater quality using multivariate statistical analysis (case study: Fasa Plain, Iran). J. Groundw. Sci. Eng. 8, 230–243 (2020).

    CAS 

    Google Scholar 

  • Bai, L. et al. Health risk assessment research on heavy metals ingestion through groundwater drinking pathway for the residents in Baotou, China. J. Environ. Health 78, 84–91 (2016).

    PubMed 

    Google Scholar 

  • Bal, A. A. Valley fills and coastal cliffs buried beneath an alluvial plain: evidence from variation of permeabilities in gravel aquifers, Canterbury Plains, New Zealand. J. Hydrol. (New Zeal.) 35, 1–27 (1996).

    Google Scholar 

  • Balachandran, A. District groundwater brochure Tirunelveli district, Tamil Nadu. Central Ground Water Board Technical Report Series. http://cgwb.gov.in/old_website/District_Profile/TN_districtprofile.html (2009).

  • Ballukraya, P. N. & Kalimuthu, R. Quantitative hydrogeological and geomorphological analyses for groundwater potential assessment in hard rock terrains. Curr. Sci. 98, 253–259 (2010).

    Google Scholar 

  • Banejad, H., Mohebzadeh, H., Ghobadi, M. H. & Heydari, M. Numerical simulation of groundwater flow and contamination transport in Nahavand Plain aquifer, west of Iran. J. Geol. Soc. India 83, 83–92 (2014).

    Google Scholar 

  • Barati, K., Koopaei, J. A., Azari, A., Darvishi, E. & Yousefi, A. Ground water modeling to determine hydrodynamics coefficients in unconfined aquifer (case study: Kermanshah Plain). Iran. J. Soil Water Res. 50, 687–700 (2019).

    Google Scholar 

  • Barker, R. A. & Ardis, A. F. Hydrogeological framework of the Edwards-Trinity aquifer system, west-central Texas. U.S. Geological Survey Professional Paper 1421-B. https://pubs.usgs.gov/pp/1421b/report.pdf (1996).

  • Barkmann, P. E. et al. ON-010 Colorado Groundwater Atlas. Geohydrology. Colorado Geological Survey. https://coloradogeologicalsurvey.org/water/colorado-groundwater-atlas/ (2020).

  • Barnett, S., Harrington, N., Cook, P. & Simmons, C. T. in Sustainable Groundwater Management. Global Issues in Water Policy, Vol. 24 (eds Rinaudo, J.-D., Hollet, C., Barnett, S. & Montginoul, M.) 109–127 (Springer, 2020).

  • Barnett, S. et al. A hydrostratigraphic model for the shallow aquifer systems of the Gambier Basin and South Western Murray Basin. Goyder Institute for Water Research Technical Report Series No. 15/15. https://goyderinstitute.org/report/a-hydrostratigraphic-model-for-the-shallow-aquifer-systems-of-the-gambier-basin-and-south-western-murray-basin/ (2015).

  • Barnett, S., Simmons, C. T. & Nelson, R. in Global Groundwater: Source, Scarcity, Sustainability, Security, and Solutions (eds Mukherjee, A., Scanlon, B. R., Aureli, A., Langan, S., Guo, H. & McKenzie, A.) 35–46 (Elsevier, 2021).

  • Barron, O. et al. Climate change effects on water-dependent ecosystems in south-western Australia. J. Hydrol. 434, 95–109 (2012).

    ADS 

    Google Scholar 

  • Bartolino, J. R. & Cole, J. C. Ground-water resources of the Middle Rio Grande Basin. U.S. Geological Survey Water-Resources Circular 1222. https://pubs.usgs.gov/circ/2002/circ1222/pdf/circ1222.pdf (2002).

  • Barzegar, R., Moghaddam, A. A. & Tziritis, E. Hydrogeochemical features of groundwater resources in Tabriz plain, northwest of Iran. Appl. Water Sci. 7, 3997–4011 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Basharat, M. Groundwater Environment and Evaluation of Long-Term Sustainability of the Aquifer under Lahore, Punjab, Pakistan. International Waterlogging and Salinity Research Institute, Pakistan Water and Power Development Authority report. Project title: “Enhancing the groundwater management capacity in Asian cities through the development and application of groundwater sustainability index (GSII) in the context of global change” (2014).

  • Baudron, P. et al. Impacts of human activities on recharge in a multilayered semiarid aquifer (Campo de Cartagena, SE Spain). Hydrol. Process. 28, 2223–2236 (2014).

    ADS 

    Google Scholar 

  • Bauer-Gottwein, P. et al. The Yucatán Peninsula karst aquifer, Mexico. Hydrol. J. 19, 507–524 (2011).

    ADS 

    Google Scholar 

  • Bayat-Varkeshi, M., Farahani, M. & Ghabaei Sough, M. Effect of meteorological drought on groundwater resource (case study: Komijan Aquifer in Markazi Province). Iran Water Resour. Res. 14, 114–124 (2018).

    Google Scholar 

  • Bazrafshan, O., Parandin, F. & Farokhzadeh, B. Assessment of hydro-meteorological drought effects on groundwater resources in Hormozgan region-South of Iran. Ecopersia 4, 1569–1584 (2016).

    Google Scholar 

  • Beach, J. A. et al. Groundwater availability model for the Igneous and parts of the West Texas Bolsons (Wild Horse Flat, Michigan Flat, Ryan Flat and Lobo Flat) aquifers. Texas Water Development Board report. https://www.twdb.texas.gov/groundwater/models/gam/igbl/IGBL_Model_Report.pdf (2004).

  • Beach, J. A., Burton, S. & Kolarik, B. Groundwater availability model for the Lipan Aquifer in Texas. Texas Water Development Board report. https://www.twdb.texas.gov/groundwater/models/gam/lipn/LIPN_Model_Report.pdf (2004).

  • Beaudoin, N., Gasparrini, M., David, M. E., Lacombe, O. & Koehn, D. Bedding-parallel stylolites as a tool to unravel maximum burial depth in sedimentary basins: application to Middle Jurassic carbonate reservoirs in the Paris basin, France. GSA Bull. 131, 1239–1254 (2019).

    CAS 

    Google Scholar 

  • Beccaletto, L., Hanot, F., Serrano, O. & Marc, S. Overview of the subsurface structural pattern of the Paris Basin (France): insights from the reprocessing and interpretation of regional seismic lines. Mar. Pet. Geol. 28, 861–879 (2011).

    Google Scholar 

  • Becker, C. J., Runkle, D. & Rea, A. Digital data sets that describe aquifer characteristics of the Enid isolated terrace aquifer in northwestern Oklahoma. U.S. Geological Survey Open-File Report 96-450. https://pubs.usgs.gov/of/1996/ofr96-450/ (1997).

  • Becker, C. J., Runkle, D. & Rea, A. Digital data sets that describe aquifer characteristics of the Elk City aquifer in western Oklahoma. U.S. Geological Survey Open-File Report 96-449. https://pubs.usgs.gov/of/1996/ofr96-449/ (1997).

  • Becker, M. F. & Runkle, D. L. Hydrogeology, water quality, and geochemistry of the Rush Springs aquifer, western Oklahoma. U.S. Geological Survey Water-Resources Investigations Report 98-4081. https://pubs.usgs.gov/wri/1998/4081/report.pdf (1998).

  • Bejarano, M. D. et al. Responses of riparian guilds to flow alterations in a Mediterranean stream. J. Veg. Sci. 23, 443–458 (2012).

    Google Scholar 

  • Bekesi, G., McGuire, M. & Moiler, D. Groundwater allocation using a groundwater level response management method—Gnangara groundwater system, Western Australia. Water Resour. Manag. 23, 1665–1683 (2009).

    Google Scholar 

  • Bengtson, S., Sallstedt, T., Belivanova, V. & Whitehouse, M. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biol. 15, e2000735 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Berens, V., Alcoe, D. & Watt, E. Non-prescribed groundwater resources assessment — Eyre Peninsula natural resources management region. Technical Report DFW 2011/16. Science, Monitoring and Information Division, Department for Water. https://www.waterconnect.sa.gov.au/Content/Publications/DEW/EP_NRM_Non-prescribed_GW_Assessment_2011.pdf (2011).

  • Berger, D. L. Hydrogeology and water resources of Ruby Valley, northeastern Nevada. U.S. Geological Survey Scientific Investigations Report 2005-5247. https://pubs.usgs.gov/sir/2005/5247/sir2005-5247.pdf (2006).

  • Berger, D. L., Ross, W. C., Thodal, C. E. & Robledo, A. R. Hydrogeology and simulated effects of urban development on water resources of Spanish Springs Valley, Washoe County, West-Central Nevada. U.S. Geological Survey Water-Resources Investigations Report 96-4297. https://pubs.usgs.gov/wri/1996/4297/report.pdf (1997).

  • Bernhard, C. et al. Nitrate pollution of groundwater in the Alsatian Plain (France)—a multidisciplinary study of an agricultural area: the Central Ried of the Ill river. Environ. Geol. Water Sci. 20, 125–137 (1992).

    ADS 
    CAS 

    Google Scholar 

  • Bestland, E. et al. Groundwater dependent pools in seasonal and permanent streams in the Clare Valley of South Australia. J. Hydrol. Reg. Stud. 9, 216–235 (2017).

    Google Scholar 

  • Betcher, R. N. Groundwater Availability Map Series – Dauphin Lake Area (62-O). Manitoba Department of Natural Resources map. https://www.gov.mb.ca/water/pubs/maps/water/1987_betcher_groundwater_availability_map_series_dauphin_lake.zip (1986).

  • Betcher, R. N. Groundwater Availability Map Series – Neepawa Area (62-J). Manitoba Department of Natural Resources map. https://www.gov.mb.ca/water/pubs/maps/water/1988_betcher_groundwater_availability_map_series_neepawa.zip (1988).

  • Betcher, R. N. Groundwater Availability Map Series – Selkirk Area (62-I). Manitoba Department of Natural Resources map. https://www.gov.mb.ca/water/pubs/maps/water/1986_betcher_groundwater_availability_map_series_selkirk.zip (1985).

  • Betcher, R. N. Groundwater Availability Map Series – Virden Area (62-F). Manitoba Department of Natural Resources map. https://www.gov.mb.ca/water/pubs/maps/water/1983_betcher_groundwater_availability_map_series_virden.zip (1983).

  • Betcher, R. N., Pupp, C. & Grove, G. Groundwater in Manitoba: hydrogeology, quality concerns, management. Environment Canada, National Hydrology Research Institute Report No. C2-93017. https://web.viu.ca/earle/geol304/hg-manitoba.pdf (1995).

  • Beverly, C. et al. The Gippsland groundwater model. Technical report. Victoria State Government. https://www.parliament.vic.gov.au/images/stories/committees/EPC/Other_documents/G3_-_Gippsland_groundwater_model_report_June_2015_2.pdf (2015).

  • Bexfield, L. M. & Anderholm, S. K. Predevelopment water-level map of the Santa Fe Group aquifer system in the middle Rio Grande basin between Cochiti Lake and San Acacia, New Mexico. U.S. Geological Survey Water-Resources Investigations Report 2000-4249. https://doi.org/10.3133/wri004249 (2000).

  • Bhimani, S. A. Study on Groundwater Salinization and Formulation of Management Strategies for the Coastal Aquifers of Mundra Region, Kutch District, Gujarat State. PhD thesis, Maharaja Sayajirao University of Baroda (2013).

  • Bhuiyan, C., Singh, R. P. & Flügel, W. A. Modelling of ground water recharge-potential in the hard-rock Aravalli terrain, India: a GIS approach. Environ. Earth Sci. 59, 929–938 (2009).

    ADS 

    Google Scholar 

  • Bhunia, G. S., Keshavarzi, A., Shit, P. K., Omran, E. S. E. & Bagherzadeh, A. Evaluation of groundwater quality and its suitability for drinking and irrigation using GIS and geostatistics techniques in semiarid region of Neyshabur, Iran. Appl. Water Sci. 8, 168 (2018).

    ADS 

    Google Scholar 

  • Bianco, E. Seismic interpretation of the Windsor-Kennetcook basin. Geological Survey of Canada Open File 7452. https://ftp.maps.canada.ca/pub/nrcan_rncan/publications/STPublications_PublicationsST/292/292763/of_7452.pdf (Geological Survey of Canada, 2013).

  • Biteau, J. J., Le Marrec, A., Le Vot, M. & Masset, J. M. The aquitaine basin. Pet. Geosci. 12, 247–273 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Bjorklund, L. J. & McGreevy, L. J. Ground-water resources of Cache Valley, Utah and Idaho. Utah Department of Natural Resources, Division of Water Rights Technical Publication No. 36. https://waterrights.utah.gov/docSys/v920/w920/w920008y.pdf (1971).

  • Bjorklund, L. J. Reconnaissance of ground water conditions in the Crow Flats area, Otero County, New Mexico. New Mexico State Engineer Office Technical Report No. 8. http://www.oteroswcd.org/PDF/NM%20OSE%20Reconnaissance%20of%20Ground%20Water%20Conditions%20in%20the%20Crow%20Flats%20Area%201957.pdf (1957).

  • Blake, S. et al. Compositional multivariate statistical analysis of thermal groundwater provenance: a hydrogeochemical case study from Ireland. Appl. Geochem. 75, 171–188 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Bocanegra, E., Da Silva, G. C., Custodio, E., Manzano, M. & Montenegro, S. State of knowledge of coastal aquifer management in South America. Hydrol. J. 18, 261–267 (2010).

    ADS 

    Google Scholar 

  • Bonsor, H. C. et al. Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia. Hydrol. J. 25, 1377–1406 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Boonkaewwan, S., Sonthiphand, P. & Chotpantarat, S. Mechanisms of arsenic contamination associated with hydrochemical characteristics in coastal alluvial aquifers using multivariate statistical technique and hydrogeochemical modeling: a case study in Rayong province, eastern Thailand. Environ. Geochem. Health 43, 537–566 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Bordbar, M., Neshat, A. & Javadi, S. A new hybrid framework for optimization and modification of groundwater vulnerability in coastal aquifer. Environ. Sci. Pollut. Res. 26, 21808–21827 (2019).

    Google Scholar 

  • Borneuf, D. M. Hydrogeological map of the Oyen area, Alberta, NTS 72M. Alberta Energy Regulator map. https://static.ags.aer.ca/files/document/MAP/Map_120.pdf (2005).

  • Boroghani, M., Taie, M. & Mirnia, S. K. Analysis of relationship between hydrogeological and climatological droughts using SWI and SPI indices in Sabzevar Plain. Iran. J. Rangeland Desert Res. 20, 733–744 (2013).

    Google Scholar 

  • Boswell, E. H. The Citronelle aquifers in Mississippi. U.S. Geological Survey Water-Resources Investigations Report 78-131. https://pubs.usgs.gov/wri/1978/0131/plate-1.pdf (1979).

  • Bouchaou, L. et al. Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss–Massa aquifer, southwest of Morocco. J. Hydrol. 352, 267–287 (2008).

    ADS 

    Google Scholar 

  • Bradley, E. Summary of the ground-water resources of the Laramie River drainage basin, Wyoming, and the North Platte River drainage basin from Douglas, Wyoming, to the Wyoming-Nebraska state line. U.S. Geological Survey Open-File Report 55-17. https://pubs.usgs.gov/of/1955/0017/report.pdf (1955).

  • Brahana, J. V. & Bradley, M. W. Preliminary delineation and description of the regional aquifers of Tennessee–the Highland Rim Aquifer System. U.S. Geological Survey Water-Resources Investigations Report 82-4054. https://pubs.usgs.gov/wri/wri824054/pdf/wrir_82-4054_a.pdf (1986).

  • Brahana, J. V., Macy, J. A., Mulderink, D. & Zemo, D. Preliminary delineation and description of the regional aquifers of Tennessee–Cumberland plateau aquifer system. U.S. Geological Survey Water-Resources Investigations Open-File Report 82-338. https://pubs.usgs.gov/wri/wrir82-338/pdf/wrir_82-338_a.pdf (1986).

  • Braun, C. L., Ramage, J. K. & Shah, S. D. Status of groundwater-level altitudes and long-term groundwater-level changes in the Chicot, Evangeline, and Jasper aquifers, Houston-Galveston region, Texas, 2019. U.S. Geological Survey Scientific Investigations Report 2019-5089. https://pubs.usgs.gov/sir/2019/5089/sir20195089.pdf (2019).

  • Bredehoeft, J. D., Neuzil, C. E. & Milly, P. C. D. Regional flow in the Dakota aquifer: a study of the role of confining layers. U.S. Geological Survey Water-Supply Paper 2237. https://pubs.er.usgs.gov/publication/wsp2237 (1983).

  • Bredehoeft, J. D. & Farvolden, R. N. Disposition of aquifers in intermontane basins of northern Nevada. International Association of Scientific Hydrology, Commission of Subterranean Waters, Publication no. 64, 197–212. https://iahs.info/uploads/dms/064017.pdf (1963).

  • Bresciani, E. et al. Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers. Hydrol. Earth Syst. Sci. 22, 1629–1648 (2018).

    ADS 
    CAS 

    Google Scholar 

  • BRGM. L’aquifère des calcaires carbonifères. Presentation for an Interreg IVB NWE project for a better quality of surface and groundwater bodies in the Scheldt International River Basin District (IRBD). https://www.isc-cie.org/wp-content/uploads/PLEN_1701_pres-Parmentier_BRGM_Carbonifere.pdf (2013).

  • Briar, D. W. & Dutton, D. M. Hydrogeology and aquifer sensitivity of the Bitterroot Valley, Ravalli County, Montana. U.S. Geological Survey Water-Resources Investigations Report 99-4219. https://pubs.usgs.gov/wri/1999/4219/report.pdf (1999).

  • Briar, D. W. & Madison, J. P. Hydrogeology of the Helena Valley-fill aquifer system, west-central Montana. U.S. Geological Survey Water-Resources Investigations Report 92-4023. https://pubs.usgs.gov/wri/1992/4023/report.pdf (1992).

  • Briceño Aguirre, A. D. Funcionamiento Hidrogeológico y Geometría del Acuífero del Sector Norte y Centro de Santiago. Thesis, Universidad de Chile (2020).

  • Bright, D. J., Stamos, C. L., Martin, P. M. & Nash, D. B. Ground-water hydrology and quality in the Lompoc area, Santa Barbara County, California, 1987-88. U.S. Geological Survey Water-Resources Investigations Report 91-4172. https://pubs.usgs.gov/wri/1991/4172/report.pdf (1992).

  • Brito-Castillo, L., Méndez Rodríguez, L. C., Chávez López, S. & Acosta Vargas, B. Groundwater differentiation of the aquifer in the Vizcaino Biosphere Reserve, Baja California Peninsula, Mexico. Geofís. Int. 49, 167–179 (2010).

    CAS 

    Google Scholar 

  • Brockman, C. S. Physiographic regions of Ohio. State of Ohio, Department of Natural Resources, Division of Geological Survey map. https://www.epa.gov/sites/default/files/2016-04/documents/05_oh_rec4.pdf (1998).

  • Brooks, H. K. Physiographic divisions of Florida. Report for the Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida (1981).

  • Brooks, L. E. & Mason, J. L. Hydrology and simulation of ground-water flow in Cedar Valley, Iron County, Utah. U.S. Geological Survey Scientific Investigations Report 2005-5170. https://pubs.usgs.gov/sir/2005/5170/PDF/SIR2005_5170.pdf (2005).

  • Brooks, L. E. Evaluation of the groundwater flow model for southern Utah and Goshen Valleys, Utah, updated to conditions through 2011, with new projections and groundwater management simulations. U.S. Geological Survey Open-File Report 2013-1171. https://pubs.usgs.gov/of/2013/1171/pdf/ofr2013-1171.pdf (2013).

  • Brown, C. R. & Macy, J. P. Groundwater, surface-water, and water-chemistry data from the C-aquifer Monitoring Program, northeastern Arizona, 2005–2011. U.S. Geological Survey Open-File Report 2012-1196. https://pubs.usgs.gov/of/2012/1196/of2012-1196.pdf (2012).

  • Brown, D. M., Lloyd, J. W. & Jacobson, G. Hydrogeological model for Amadeus Basin aquifers, central Australia. Aust. J. Earth Sci. 37, 215–226 (1990).

    ADS 

    Google Scholar 

  • Bruun, B., Jackson, K., Lake, P. & Walker, J. Texas aquifers study. Groundwater quantity, quality, flow, and contributions to surface water. Texas Water Development Board report. https://www.twdb.texas.gov/groundwater/docs/studies/TexasAquifersStudy_2016.pdf#page=89 (2016).

  • Bugan, R. D. et al. Four decades of water recycling in Atlantis (Western Cape, South Africa): past, present and future. Water SA 42, 577–594 (2016).

    Google Scholar 

  • Bujes Moreno, N. J. I. Estudio de la propiedad del agua subterránea del acuίfero del Rίo Petorca en la Región de Valparaίso, Chile. Thesis, Universidad de Chile (2015).

  • Buono, A. The Southern Hills regional aquifer system of southeastern Louisiana and southwestern Mississippi. U.S. Geological Survey Water-Resources Investigations Report 83-4189. https://pubs.usgs.gov/wri/1983/4189/report.pdf (1983).

  • Burbey, T. J. Hydrogeology and potential for ground-water development, carbonate-rock aquifers in southern Nevada and southeastern California. U.S. Geological Survey Water-Resources Investigations Report 95-4168. https://pubs.usgs.gov/wri/1995/4168/report.pdf (1997).

  • Burgess, W. G. et al. Vulnerability of deep groundwater in the Bengal Aquifer System to contamination by arsenic. Nat. Geosci. 3, 83–87 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Burns, E. R., Morgan, D. S., Peavler, R. S. & Kahle, S. C. Three-dimensional model of the geologic framework for the Columbia Plateau regional aquifer system, Idaho, Oregon, and Washington. U.S. Geological Survey Scientific Investigations Report 2010-5246. https://pubs.usgs.gov/sir/2010/5246/pdf/sir20105246.pdf (2011).

  • Burns, E. R., Snyder, D. T., Haynes, J. V. & Waibel, M. S. Groundwater status and trends for the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho. U.S. Geological Survey Scientific Investigations Report 2012-5261. https://pubs.usgs.gov/sir/2012/5261/pdf/sir2012-5261.pdf (2012).

  • Cai, Y., Esaki, T., Liu, S. & Mitani, Y. Effect of substitute water projects on tempo-spatial distribution of groundwater withdrawals in Chikugo-Saga plain, Japan. Water Resour. Manag. 28, 4645–4663 (2014).

    Google Scholar 

  • Calatrava, J., Guillem, A. & Martínez-Granados, D. Analysis of alternatives to eliminate aquifer overdraft in the Guadalentín Valley, SE Spain. Econ. Agrar. Recur. Nat. 11, 33–62 (2011).

    Google Scholar 

  • Calf, G. E., McDonald, P. S. & Jacobson, G. Recharge mechanism and groundwater age in the Ti‐Tree Basin, Northern Territory. Aust. J. Earth Sci. 38, 299–306 (1991).

    ADS 

    Google Scholar 

  • California Department of Water Resources. Basin Boundaries Description – Imperial Valley. Bulletin 118. https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/Groundwater-Management/Bulletin-118/Files/2003-Basin-Descriptions/7_030_ImperialValley.pdf (2003).

  • California Department of Water Resources. Borrego Valley – Ocotillo Wells Basin Boundaries. https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/Groundwater-Management/Bulletin-118/Files/2016-Basin-Boundary-Descriptions/7_024_02_OcotilloWells.pdf (2016).

  • California Department of Water Resources. California’s groundwater update 2013 – Chapter 10: North Lahontan Hydrologic Region. https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/Groundwater-Management/Bulletin-118/Files/Statewide-Reports/GWU2013_Ch10_NorthLahontan_Final.pdf (2015).

  • California Department of Water Resources. California’s groundwater update 2013 – Chapter 11: South Lahontan Hydrologic Region. https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/Groundwater-Management/Data-and-Tools/Files/Statewide-Reports/California-Groundwater-Update-2013/California-Groundwater-Update-2013—Chapter-11—South-Lahontan.pdf (2015).

  • California Department of Water Resources. California’s groundwater update 2013 – Chapter 12: Colorado River Hydrologic Region. https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/Groundwater-Management/Bulletin-118/Files/Statewide-Reports/GWU2013_Ch12_ColoradoRiver_Final.pdf (2015).

  • California Department of Water Resources. California’s groundwater update 2013 – Chapter 3: North Coast Hydrologic Region. https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/Groundwater-Management/Bulletin-118/Files/Statewide-Reports/GWU2013_Ch3_NorthCoast_Final.pdf (2015).

  • California Department of Water Resources. California’s groundwater update 2013 – Chapter 4: San Francisco Bay Hydrologic Region. https://cawaterlibrary.net/wp-content/uploads/2017/05/GWU2013_Ch4_SanFranciscoBay_Final.pdf (2015).

  • California Department of Water Resources. California’s groundwater update 2013 – Chapter 5: Central Coast Hydrologic Region. https://cawaterlibrary.net/wp-content/uploads/2017/05/GWU2013_Ch5_CentralCoast_Final.pdf (2015).

  • California Department of Water Resources. California’s groundwater update 2013 – Chapter 6: South Coast Hydrologic Region. https://cawaterlibrary.net/wp-content/uploads/2017/05/GWU2013_Ch6_SouthCoast_Final.pdf (2015).

  • California Department of Water Resources. California’s groundwater update 2013 – Chapter 7: Sacramento River Hydrologic Region. https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/Groundwater-Management/Bulletin-118/Files/Statewide-Reports/GWU2013_Ch7_SacramentoRiver_Final.pdf (2015).

  • California Department of Water Resources. California’s groundwater update 2013 – Chapter 8: San Joaquin River Hydrologic Region. https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/Groundwater-Management/Data-and-Tools/Files/Statewide-Reports/California-Groundwater-Update-2013/California-Groundwater-Update-2013—Chapter-8—San-Joaquin-River.pdf (2015).

  • California Department of Water Resources. California’s groundwater update 2013 – Chapter 9: Tulare Lake Hydrologic Region. https://data.cnra.ca.gov/dataset/california-water-plan-groundwater-update-2013/resource/8a4ae915-b786-42e1-9abe-99a8fcc23349 (2015).

  • Callegary, J. B. et al. San Pedro River Aquifer Binational Report: International Boundary and Water Commission. https://pubs.usgs.gov/publication/70191935 (2016).

  • Camacho, E. A. S. Estimación del volumen promedio recibido por el humedal de la subcuenca del Río Blanco (bajo Papaloapan; Veracruz), a través del cálculo de un balance de aguas. Aqua-LAC 2, 78–87 (2010).

    Google Scholar 

  • Campbell, E. E., Parker-Nance, T. & Bate, G. C. A compilation of information on the magnitude, nature and importance of coastal aquifers in Southern Africa. Water Research Commission Report No. 370/1/92. http://www.wrc.org.za/wp-content/uploads/mdocs/370-1-92.pdf (1992).

  • Campos, C. et al. Soil water retention and carbon pools in tropical forested wetlands and marshes of the Gulf of Mexico. Hydrol. Sci. J. 56, 1388–1406 (2011).

    Google Scholar 

  • Campos, M. N. et al. Sectorization of environmental risk and human consumption of manganese in groundwater extracted from the Sinaloa River Aquifer. WIT Trans. Ecol. Environ. 171, 247–257 (2013).

    CAS 

    Google Scholar 

  • Campos, M. N., Muñoz-Sevilla, P. & Le Bail, M. in Advances in Environmental Monitoring and Assessment (ed. Sarvajayakesavalu, S.) Ch. 1, 3–19 (IntechOpen, 2019).

  • Camuñas Palencia, C., Mejías Moreno, M., Hornero Díaz, J. E., Ruíz Bermudo, F. & García Menéndez, O. Deep aquifers as strategic groundwater reservoir in Spain. Bol. Geol. Min. 133, 7–26 (2022).

    Google Scholar 

  • Cañez Araiza, D. A. Caracterización hidrogeoquímica y situación actual de la intrusión marina en la porción costera del acuífero Caborca, Sonora, México. MSc thesis, Universidad de Sonora (2018).

  • Cantwell, C. A. & Fawler, A. P. G. in Proc. Thirty-Ninth Workshop on Geothermal Reservoir Engineering. SGP-TR-202. https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2014/Cantwell.pdf (2014).

  • Cao, S. et al. Determining the origin and fate of nitrate in the Nanyang Basin, Central China, using environmental isotopes and the Bayesian mixing model. Environ. Sci. Pollut. Res. 28, 48343–48361 (2021).

    CAS 

    Google Scholar 

  • Carceller-Layel, T., Costa-Alandí, C., Coloma-López, P., García-Vera, M. Á. & San Román-Saldaña, J. Groundwater in the central sector of the Ebro Basin. Water Resour. Dev. 23, 165–187 (2007).

    Google Scholar 

  • Cardona, A., Carrillo-Rivera, J. J., Huizar-Alvarez, R. & Graniel-Castro, E. Salinization in coastal aquifers of arid zones: an example from Santo Domingo, Baja California Sur, Mexico. Environ. Geol. 45, 350–366 (2004).

    CAS 

    Google Scholar 

  • Cardoso, P. R. Saline water intrusion in Mexico. WIT Trans. Ecol. Environ. 2, 37–43 (1993).

    Google Scholar 

  • Cardwell, G. T. Geology and ground water in the Santa Rosa and Petaluma Valley areas, Sonoma County, California. U.S. Geological Survey Water-Supply Paper 1427. https://pubs.usgs.gov/wsp/1427/report.pdf (1958).

  • Carroll, R. W. et al. Mason Valley groundwater model: linking surface water and groundwater in the Walker River Basin, Nevada. J. Am. Water Resour. Assoc. 46, 554–573 (2010).

    ADS 

    Google Scholar 

  • Carroll, R. W. H., Pohll, G. & Rajagopal, S. South Lake Tahoe groundwater model. Desert Research Institute report. https://www.stpud.us/Phase%20I%20Report_revised_Feb_25_2016.pdf (2016).

  • Carruth, R. L., Kahler, L. M. & Conway, B. D. Groundwater-storage change and land-surface elevation change in Tucson Basin and Avra Valley, south-central Arizona—2003–2016. U.S. Geological Survey Scientific Investigations Report 2018-5154. https://pubs.usgs.gov/sir/2018/5154/sir20185154.pdf (2018).

  • Cartwright, I. et al. Constraining groundwater flow, residence times, inter-aquifer mixing, and aquifer properties using environmental isotopes in the southeast Murray Basin, Australia. Appl. Geochem. 27, 1698–1709 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Casado, M. The Tagus basin: groundwater and transboundary Aquifers. Presentation at the Workshop on Transboundary Water Resources Management in Western and Central Europe. https://www.researchgate.net/publication/341251820_The_Tagus_basin_Groundwater_and_Transboundary_Aquifers (2010).

  • Central Ground Water Board. Aquifer mapping and ground water management Chennai Aquifer System. Central Ground Water Board report. http://cgwb.gov.in/cgwbpnm/public/uploads/documents/1699436014992103716file.pdf (2017).

  • Central Ground Water Board. Aquifer systems of Chhattisgarh. Central Ground Water Board report. http://cgwb.gov.in/old_website/AQM/Chhattisgarh.pdf (2012).

  • Central Ground Water Board. Aquifer systems of India. Central Ground Water Board report. http://cgwb.gov.in/cgwbpnm/public/uploads/documents/1687419512680023437file.pdf (2012).

  • Central Ground Water Board. Aquifer systems of Karnataka. Central Ground Water Board report. http://cgwb.gov.in/old_website/AQM/Karnataka.pdf (2012).

  • Central Ground Water Board. Aquifer systems of Kerala. Central Ground Water Board report. http://cgwb.gov.in/old_website/AQM/Kerala.pdf (2012).

  • Central Ground Water Board. Aquifer systems of Madhya Pradesh. Central Ground Water Board report. http://cgwb.gov.in/old_website/AQM/Madhya%20Pradesh.pdf (2013).

  • Central Ground Water Board. Aquifer systems of Tamilnadu and Puducherry. Central Ground Water Board report. http://cgwb.gov.in/cgwbpnm/publication-detail/670 (2012).

  • Central Ground Water Board. Ground water information booklet Dharwad District, Karnataka. Central Ground Water Board report. http://cgwb.gov.in/old_website/District_Profile/Karnataka_districtprofile.html (2008).

  • Central Ground Water Board. Ground water information booklet Haveri District, Karnataka. Central Ground Water Board report. http://cgwb.gov.in/old_website/District_Profile/Karnataka_districtprofile.html (2008).

  • Central Ground Water Board. Ground water information booklet, Bhadrak District, Orissa. Central Ground Water Board report. http://cgwb.gov.in/old_website/District_Profile/Orissa/BHADRAK%20.pdf (2013).

  • Central Ground Water Board. Ground water information Jaipur District, Rajasthan. Central Ground Water Board report. http://cgwb.gov.in/old_website/District_Profile/Rajasthan/Jaipur.pdf (2013).

  • Central Ground Water Board. Pilot Project Report on Aquifer mapping in Lower Vellar watershed, Cuddalore District, Tamilnadu. Central Ground Water Board report. http://cgwb.gov.in/cgwbpnm/publication-detail/311 (2015).

  • Cerón, J. C. & Pulido-Bosch, A. Groundwater problems resulting from CO2 pollution and overexploitation in Alto Guadalentín aquifer (Murcia, Spain). Environ. Geol. 28, 223–228 (1996).

    ADS 

    Google Scholar 

  • Chalapathi Rao, N. V., Gibson, S. A., Pyle, D. M. & Dickin, A. P. Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah Basin and Dharwar craton, southern India. J. Petrol. 45, 907–948 (2004).

    ADS 

    Google Scholar 

  • Chamanehpour, E., Sayadi, M. H. & Yousefi, E. The potential evaluation of groundwater pollution based on the intrinsic and the specific vulnerability index. Groundw. Sustain. Dev. 10, 100313 (2020).

    Google Scholar 

  • Chang, J. & Wang, G. Major ions chemistry of groundwater in the arid region of Zhangye Basin, northwestern China. Environ. Earth Sci. 61, 539–547 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Chapman, J. B., Thomas, J. M. & Garner, C. Groundwater recharge timing based on 14C and 2H within Indian Wells Valley, California, USA. Appl. Geochem. 141, 105268 (2022).

    CAS 

    Google Scholar 

  • Chastain-Howley, A., Dean, K. E. & Spear, A. A. Groundwater Availability Model for the Seymour Aquifer. Texas Water Development Board report. https://www.twdb.texas.gov/groundwater/models/gam/symr/symr.asp (2004).

  • Chatterjee, S., Biswal, B. P., Sinha, U. K. & Patbhaje, S. D. Isotope-geochemical assessment of thermal waters and their impact on surrounding potable water resources in the Tapi valley geothermal area, Maharashtra, India. Environ. Earth Sci. 80, 424 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Chen, C. T., Hu, J. C., Lu, C. Y., Lee, J. C. & Chan, Y. C. Thirty-year land elevation change from subsidence to uplift following the termination of groundwater pumping and its geological implications in the Metropolitan Taipei Basin, Northern Taiwan. Eng. Geol. 95, 30–47 (2007).

    Google Scholar 

  • Chen, W. F. & Liu, T. K. Dissolved oxygen and nitrate of groundwater in Choshui Fan-Delta, western Taiwan. Environ. Geol. 44, 731–737 (2003).

    CAS 

    Google Scholar 

  • Chen, Z., Wei, W., Liu, J., Wang, Y. & Chen, J. Identifying the recharge sources and age of groundwater in the Songnen Plain (Northeast China) using environmental isotopes. Hydrol. J. 19, 163–176 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Cheraghi, S. A. M., Nagafi, B., Shajari, S. & Javan, M. The trend of changes in groundwater quantity and quality in the Sarvestan Plain of Fars Province. Watershed Manag. Res. J. 33, 82–96 (2020).

    Google Scholar 

  • Cherry, A. J. A Multi-tracer Estimation of Groundwater Recharge in a Glaciofluvial Aquifer in Southeastern Manitoba. MSc thesis, Univ. Ottawa (2000).

  • Chica-Olmo, M., Luque-Espinar, J. A., Rodriguez-Galiano, V., Pardo-Igúzquiza, E. & Chica-Rivas, L. Categorical Indicator Kriging for assessing the risk of groundwater nitrate pollution: the case of Vega de Granada aquifer (SE Spain). Sci. Total Environ. 470, 229–239 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Choubin, B. & Malekian, A. Relationship between fluctuations in the water table and aquifer salinization (case study: Aquifer Aspas-Fars Province). Desert Manag. 1, 13–26 (2013).

    Google Scholar 

  • Chowdari, S. et al. Structural mapping based on potential field and remote sensing data, South Rewa Gondwana Basin, India. J. Earth Syst. Sci. 126, 1–27 (2017).

    Google Scholar 

  • Christenson, S. et al. Hydrogeology and simulation of groundwater flow in the Arbuckle-Simpson aquifer, south-central Oklahoma. U.S. Geological Survey Scientific Investigations Report 2011-5029. https://pubs.usgs.gov/sir/2011/5029/SIR2011-5029.pdf (2011).

  • Chucuya, S. et al. Hydrogeochemical characterization and identification of factors influencing groundwater quality in coastal aquifers, case: La Yarada, Tacna, Peru. Int. J. Environ. Res. Public Health 19, 2815 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cigna, F. & Tapete, D. Satellite InSAR survey of structurally-controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico. Remote Sens. Environ. 254, 112254 (2021).

    Google Scholar 

  • City of Chilliwack. Groundwater Protection. https://www.chilliwack.com/main/page.cfm?id=205 (2021).

  • Clark, B. R., Duncan, L. L. & Knierim, K. J. Groundwater availability in the Ozark Plateaus aquifer system. U.S. Geological Survey Professional Paper 1854. https://pubs.er.usgs.gov/publication/pp1854 (2019).

  • Clark, W. Z. & Zisa, A. C. Physiographic map of Georgia. Georgia Department of Natural Resources. https://epd.georgia.gov/document/publication/sm-4-physiographic-map-georgia-12000000-1988/download (1976).

  • Clauzon, G. et al. Genèse et évolution du piémont néogène subalpin du bas Dauphiné. Université d’Aix-Marseille II. https://hal-insu.archives-ouvertes.fr/file/index/docid/459143/filename/Clauzon1990.pdf (1990).

  • Coes, A., Gellenbeck, D. J., Towne, D. C. & Freark, M. C. Ground water quality in the Upper Santa Cruz Basin. U.S. Geological Survey Water-Resources Investigations Report 00-4117. https://pubs.usgs.gov/wri/2000/4117/report.pdf (2002).

  • Commission locale de l’eau Basse Vallee de l’Ain. Plan d’Aménagement et de Gestion Durable de la ressource en eau et des milieux aquatiques [PAGD]. https://www.gesteau.fr/sites/default/files/2-sage_pagd-adopte.pdf (2013).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en al acuifero Rio Fuerte (2501), estado de Sinaloa. Comisión Nacional del Agua report. https://www.gob.mx/cms/uploads/attachment/file/103330/DR_2501.pdf (2015).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Abrego (3215), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3215.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Bajo Rio Bravo (2801), estado de Tamaulipas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/tamaulipas/DR_2801.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Cedros (3218), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3218.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero El Salvador (3219), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3219.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Flores Magon-Villa Ahumada (0821), estado de Chihuahua. https://www.gob.mx/cms/uploads/attachment/file/103582/DR_0821.pdf (2015).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Guadalupe Garzarón (3212), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3220.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Hidalgo (3202), estado de Zacatecas. https://www.gob.mx/cms/uploads/attachment/file/104507/DR_3202.pdf (2015).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Huatulco (2011), estado de Oaxaca. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/oaxaca/DR_2011.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero La Blanca (3228), estado de Zacatecas. https://www.gob.mx/cms/uploads/attachment/file/104536/DR_3228.pdf (2015).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Lampazos Villaldama (1901), estado de Nuevo León. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/nleon/DR_1901.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Libres-Oriental (2102), estado de Puebla. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/puebla/DR_2102.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Loreta (3229), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3229.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Méndez San Fernando (2802), estado de Tamaulipas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/tamaulipas/DR_2802.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Navidad-Potosí-Raíces (1916), estado de Nuevo León. https://www.gob.mx/cms/uploads/attachment/file/103175/DR_1916.pdf (2015).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Ojocaliente (3212), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3212.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Perote-Zalayeta (3004), estado de Veracruz. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/veracruz/DR_3004.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Pino Suárez (3233), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3233.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Poza Rica (3001), estado de Veracruz. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/veracruz/DR_3001.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Puerto Madero (3224), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3224.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Río Cañas (2513), estado de Sinaloa. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/sinaloa/DR_2513.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Río Presidio (2509), estado de Sinaloa. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/sinaloa/DR_2509.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Río Sinaloa (2502), estado de Sinaloa. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/sinaloa/DR_2502.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Sabinas (3201), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3201.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Sain Alto (3216), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3216.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Sabinas-Parás (1902), estado de Nuevo León. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/nleon/DR_1902.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero San Felipe-Punta Estrella (0222), estado de Baja California. https://www.gob.mx/cms/uploads/attachment/file/103420/DR_0222.pdf (2015).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero San José de Guaymas (2636), estado de Sonora. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/sonora/DR_2636.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Valle de Canatlán (1002), estado de Durango. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/durango/DR_1002.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Valle de Escuinapa (2511), estado de Sinaloa. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/sinaloa/DR_2511.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Vanegas-Catorce (2401), estado de San Luis Potosi. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/sanluispotosi/DR_2401.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Vicente Guerrero-Poanas (1004), estado de Durango. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/durango/DR_1004.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Villa de Arriaga (2406), estado de San Luis Potosi. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/sanluispotosi/DR_2406.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuífero Villa García (3213), estado de Zacatecas. https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/zacatecas/DR_3213.pdf (2020).

  • CONAGUA. Actualización de la disponibilidad media anual de agua en el acuifero Orizaba-Córdoba (3007), estado de Veracruz. https://www.gob.mx/cms/uploads/attachment/file/104452/DR_3007.pdf (2015).

  • CONAGUA. Acuíferos (nacional). https://sinav30.conagua.gob.mx:8080/SINA/?opcion=acuiferos (2021).

  • CONAGUA. Aguas subterráneas/Acuíferos. https://sigagis.conagua.gob.mx/aprovechamientos/ (2021).

  • Connecticut Department of Energy & Environmental Protection. Overview of the Ground Water Flow System in Connecticut. https://portal.ct.gov/DEEP/Aquifer-Protection-and-Groundwater/Ground-Water/Ground-Water-Flow-System-in-Connecticut (2021).

  • Contoux, C., Violette, S., Vivona, R., Goblet, P. & Patriarche, D. How basin model results enable the study of multi-layer aquifer response to pumping: the Paris Basin, France. Hydrol. J. 21, 545–557 (2013).

    ADS 

    Google Scholar 

  • Cook, P. G., Jolly, I. D., Leaney, F. W. J. Groundwater recharge in the Mallee region, and salinity implications for the Murray River: a review. CSIRO Land and Water report. https://publications.csiro.au/publications/publication/PIprocite:ef08494d-43a2-4dae-bda4-3d72a62e673f/SQ%22Groundwater%20recharge%20in%20the%20Mallee%20Region%2C%20and%20salinity%22/RP1/RS25/RORECENT/STsearch-by-keyword/LISEA/RI1/RT1 (2001).

  • Courtois, N. et al. Large‐scale mapping of hard‐rock aquifer properties applied to Burkina Faso. Groundwater 48, 269–283 (2010).

    CAS 

    Google Scholar 

  • Cox, S. E. & Kahle, S. C. Hydrogeology, ground-water quality, and sources of nitrate in lowland glacial aquifers of Whatcom County, Washington, and British Columbia, Canada. U.S. Geological Survey Water-Resources Investigations Report 98-4195. https://pubs.er.usgs.gov/publication/wri984195 (1999).

  • Craig, T. W. Ground Water of the Uncompahgre Valley Montrose County, Colorado. MSc thesis, Univ. Missouri-Rolla (1971).

  • Cresswell, R. G., Jacobson, G., Wischusen, J. & Fifield, L. K. Ancient groundwaters in the Amadeus Basin, Central Australia: evidence from the radio-isotope 36Cl. J. Hydrol. 223, 212–220 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Cresswell, R. & Gibson, D. Application of Airborne Geophysical Techniques to Groundwater Resource Issues in the Angas-Bremer Plains, South Australia. South Australia Salinity Mapping and Management Support Project Report No. DWLBC 2004/35, Land and Biodiversity Services Division, Department of Water, Land and Biodiversity Conservation. http://angasbremerwater.org.au/documents/abplains_summary.pdf (2004).

  • Crosbie, R. S. & Rachakonda, P. K. Constraining probabilistic chloride mass-balance recharge estimates using baseflow and remotely sensed evapotranspiration: the Cambrian Limestone Aquifer in northern Australia. Hydrol. J. 29, 1399–1419 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Crow, R. S. et al. The Colorado River and its deposits downstream from Grand Canyon in Arizona, California, and Nevada. U.S. Geological Survey Open-File Report 2018-1005. https://pubs.usgs.gov/of/2018/1005/ofr20181005.pdf (2018).

  • Crowley, J. J., LaFave, J. I., Bergantino, R. N., Carstarphen, C. A. & Patton, T. W. Principle Aquifers of Montana. Montana Bureau of Mines and Geology Hydrogeologic Map 11. https://www.leg.mt.gov/content/Committees/Interim/2017-2018/Water-Policy/Meetings/Jan-2018/Exhibits/Jan9/Exhibit5.pdf (2017).

  • Currell, M., Banfield, D., Cartwright, I. & Cendón, D. I. Geochemical indicators of the origins and evolution of methane in groundwater: Gippsland Basin, Australia. Environ. Sci. Pollut. Res. 24, 13168–13183 (2017).

    CAS 

    Google Scholar 

  • Currell, M., Cendón, D. I. & Cheng, X. Analysis of environmental isotopes in groundwater to understand the response of a vulnerable coastal aquifer to pumping: Western Port Basin, south-eastern Australia. Hydrol. J. 21, 1413–1427 (2013).

    ADS 

    Google Scholar 

  • Currie, D. et al. Investigating the impact of climate change on groundwater resources: Aquifer characterisation. Report to the National Water Commission. https://publications.csiro.au/rpr/download?pid=csiro:EP202082&dsid=DS3 (2010).

  • Custodio, E. et al. Groundwater intensive use and mining in south-eastern peninsular Spain: hydrogeological, economic and social aspects. Sci. Total Environ. 559, 302–316 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cutshall, I. Urban settlement in Hokkaido. Econ. Geogr. 25, 17–22 (1949).

    Google Scholar 

  • Dadgar, M. A., Zeaieanfirouzabadi, P., Dashti, M. & Porhemmat, R. Extracting of prospective groundwater potential zones using remote sensing data, GIS, and a probabilistic approach in Bojnourd basin, NE of Iran. Arab. J. Geosci. 10, 114 (2017).

    Google Scholar 

  • Dalmau, A. B., Gimena, E. C. & Vierbücher, C. L. Las aguas subterráneas en el delta del ebro. Revista de Obras Públicas, 3.36847. https://rac.es/ficheros/doc/00538.pdf (1997).

  • Danis, C. Use of groundwater temperature data in geothermal exploration: the example of Sydney Basin, Australia. Hydrol. J. 22, 87–106 (2014).

    Google Scholar 

  • Dar, F. A. et al. Karstification in the Cuddapah Sedimentary Basin, southern India: implications for groundwater resources. Acta Carsologica 40, 457–472 (2011).

    Google Scholar 

  • Das, P. P. Saline contamination Mahanadi deltaic aquifers: a review. Proc. Indian Natl Sci. Acad. 86, 1169–1176 (2020).

    Google Scholar 

  • Das, S. & Prakash, I. in Proc. 6th International Conference on Case Histories in Geotechnical Engineering. https://core.ac.uk/download/pdf/229070665.pdf (2008).

  • Daskin, W. R. Preliminary evaluation of the hydrogeologic system in Owens Valley, California. U.S. Geological Survey Water-Resources Investigations Report 88-4003. https://pubs.usgs.gov/wri/1988/4003/report.pdf (1988).

  • Davidson, B. Kentucky Interagency Groundwater Monitoring Network: Annual Report July 2017–June 2018. http://www.uky.edu/KGS/water/gnet/itac17-18.pdf (2018).

  • Davidson, W. A. & Yu, X. Perth region aquifer modelling system — PRAMS, hydrogeology and groundwater modelling. Western Australia Department of Water Hydrogeological Record Series HG20. https://www.wa.gov.au/system/files/2022-04/Perth-Region-Aquifer-Modelling-System-%28PRAMS%29-hydrogeology-and-groundwater-modelling.pdf (2006).

  • Davies, H. & Hanley, P. T. State of the Watershed Report – 2010. Water Security Agency, Saskatchewan. Appendix A. https://www.wsask.ca/wp-content/uploads/2021/02/a_2010StateoftheWatershedReport.pdf (2010).

  • Davies-Smith, A., Bolke, E. L. & Collins, C. A. Geohydrology and digital simulation of the ground-water flow system in the Umatilla Plateau and Horse Heaven Hills area, Oregon and Washington. U.S. Geological Survey Water-Resources Investigations Report 87-4268. https://pubs.usgs.gov/wri/1987/4268/report.pdf (1988).

  • Davis, H. Hydrogeologic investigation and simulation of ground-water flow in the Upper Floridan aquifer of North-Central Florida and Southwestern Georgia and delineation of contributing areas for selected city of Tallahassee, Florida, water-supply wells. U.S. Geological Survey Water-Resources Investigations Report 95-4296. https://fl.water.usgs.gov/PDF_files/wri95_4296_davis.pdf (1996).

  • Day, J. C. International aquifer management: the Hueco Bolson on the Rio Grande River. Nat. Resour. J. 18, 163–180 (1978).

    Google Scholar 

  • de Caritat, P. et al. Groundwater geochemistry, hydrogeology and potash mineral potential of the Lake Woods region, Northern Territory, Australia. Aust. J. Earth Sci. 66, 411–430 (2019).

    Google Scholar 

  • de la Losa, A., Moreno, L. & Nunez, E. L. Calidad química de las aguas subterráneas en una zona de actividad minera (Cuenca del Bierzo- León). Bol. Geol. Min. 121, 103–122 (2010).

    Google Scholar 

  • de Lourdes Corral-Bermudez, M., Sánchez-Ortiz, E., Álvarez-Bernal, D., Gutiérrez-Montenegro, M. O. & Cassio-Madrazo, E. Scenarios of availability of water due to overexploitation of the aquifer in the basin of Laguna de Santiaguillo, Durango, Mexico. PeerJ 7, e6814 (2019).

    Google Scholar 

  • Melo, M. C.De, Paquete, P. C. & Silva, M. M.Da Evolution of the Aveiro Cretaceous aquifer (NW Portugal) during the Late Pleistocene and present day: evidence from chemical and isotopic data. Geol. Soc. Lond. Spec. Publ. 189, 139–154 (2001).

    Google Scholar 

  • de Montety, V. et al. Origin of groundwater salinity and hydrogeochemical processes in a confined coastal aquifer: case of the Rhône delta (Southern France). Appl. Geochem. 23, 2337–2349 (2008).

    ADS 

    Google Scholar 

  • Souza, E. L.de et al. Síntese da hidrogeologia nas bacias sedimentares do Amazonas e do Solimões: Sistemas Aquíferos Içá-Solimões e Alter do Chão. Geol. USP Série Científica 13, 107–117 (2013).

    Google Scholar 

  • Deeds, N. E. et al. Final conceptual model report for the High Plains Aquifer System groundwater availability model. Texas Water Development Board report. https://www.twdb.texas.gov/groundwater/models/gam/hpas/HPAS_GAM_Conceptual_Report.pdf (2015).

  • Deolankar, S. B. The Deccan basalts of Maharashtra, India—their potential as aquifers. Groundwater 18, 434–437 (1980).

    Google Scholar 

  • Department of Environment and Water of the Government of South Australia. Lower Limestone Coast PWA Unconfined Aquifer. 2017 groundwater level and salinity status report. https://www.waterconnect.sa.gov.au/Content/Publications/DEW/Lower_Limestone_Coast_PWA_Unconfined_GSR_2017.pdf (2017).

  • Department of Environment, Water and Natural Resources of the Government of South Australia. Booborowie Valley. Groundwater level and salinity status report. https://www.waterconnect.sa.gov.au/Content/Publications/DEW/Booborowie_Valley_Status_Report_2011.pdf (2011).

  • Department of Science, IT, Innovation and the Arts. Mulgrave River basin hydrology – development of groundwater flow model for the Mulgrave River basin. Report prepared for the Department of Natural Resources and Mines for the Wet Tropics Draft Water Resource Plan. https://nla.gov.au/nla.obj-2742766628/view (2013).

  • Department of Water Affairs and Forestry, South Africa. Vaal River system: large bulk water supply reconciliation strategy: groundwater assessment: dolomite aquifers. DWAF Report Number: P RSA C000/00/4406/06. https://www.dws.gov.za/iwrp/Vaal/documents/LargeBulkWater/06_Dolomitic%20Groundwater%20Assessment_Final.pdf (2006).

  • Department of Water and Sanitation. Groundwater status report – Western Cape Region. Department of Water and Sanitation map. https://www.dws.gov.za/Groundwater/GroundwaterOffices/WC/Annual%20report_%20groundwater%20status%20A0%20-%20201503.pdf (2015).

  • Deshpande, R. D. Groundwater in and Around Cambay Basin, Gujarat: Some Geochemical and Isotopic Investigations. PhD thesis, Physical Research Laboratory (2006).

  • Dever, L., Travi, Y., Barbecot, F., Marlin, C. & Gibert, E. Evidence for palaeowaters in the coastal aquifers of France. Geol. Soc. Lond. Spec. Publ. 189, 93–106 (2001).

    ADS 
    CAS 

    Google Scholar 

  • Dhar, A. et al. Hydro-environmental assessment of a regional ground water aquifer: Hirakud command area (India). Environ. Earth Sci. 73, 4165–4178 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Dhinagaran, V. District Groundwater Brochure Thanjavur District, Tamil Nadu. Central Ground Water Board, Ministry of Water Resources report. http://cgwb.gov.in/old_website/District_Profile/TN_districtprofile.html (2009).

  • Díaz González, T. E. & Penas, Á. in The Vegetation of the Iberian Peninsula Vol. 12 (ed. Loidi, J.) 251–321 (Springer, 2017).

  • Direccion General de Aguas. Analisis de disponibilidad de recursos hidricos subterraneous en el sector hidrogeologico de aprovechamiento comun Huasco Desembocadura, Cuencas Rio Huasco. Report No. 14593214. https://dga.mop.gob.cl/Decretos_Escacez/0303-2.pdf (2021).

  • Direccion General de Aguas. Diagnóstico y Clasificación de Sectores Acuíferos, Volumen No. 2. Gobierno de Chile Ministerio de Obras Publicas report. https://snia.mop.gob.cl/sad/CQA5168v2.pdf (2009).

  • Direccion General de Aguas. Inventario Nacional de acuiferos. Ministerio De Obras Públicas (Gobierno De Chile) report number 403. https://snia.mop.gob.cl/sad/SUB5748.pdf (2017).

  • Direccion General de Aguas. Plan Nacional de Estudios Acuíferos. Report number 381. https://bibliotecadigital.ciren.cl/bitstream/handle/20.500.13082/32415/DGA_2015_actualizacion_plan_nacional_acuiferos.pdf?sequence=1&isAllowed=y (2015).

  • Divine, D. & Sibray, S. S. An overview of secondary aquifers in Nebraska. Conservation and Survey Division, Educational Circular No. 26. https://core.ac.uk/download/pdf/127441451.pdf (2017).

  • D’Lugosz, J. J. & McClaflin, R. G. Geohydrology of the Vamoosa-Ada aquifer east-central Oklahoma with a section on chemical quality of water. U.S. Geological Survey Circular 87. http://www.ogs.ou.edu/pubsscanned/Circulars/circular87mm.pdf (1986).

  • Dong, L., Guo, Y., Tang, W., Xu, W. & Fan, Z. Statistical evaluation of the influences of precipitation and river level fluctuations on groundwater in Yoshino River Basin, Japan. Water 14, 625 (2022).

    Google Scholar 

  • Donoso, G., Lictevout, E. & Rinaudo, J.-D. in Sustainable Groundwater Management. (eds Rinaudo, J. D., Holley, C., Barnett, S. & Montginoul, M.) 481–509 (Springer, 2020).

  • Dörfler, M. Analysis of Aquifer-induced Soil Movements of Heterogeneous Subsoil in Urban Areas Based on Groundwater, Borehole and InSAR Data, a Case Study of Salzburg. Masters thesis, Paris-Lodron-Univ. Salzburg (2021).

  • Douglas, A. A., Osiensky, J. L. & Keller, C. K. Carbon-14 dating of ground water in the Palouse Basin of the Columbia River basalts. J. Hydrol. 334, 502–512 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Downey, J. S. Geohydrology of the Madison and associated aquifers in parts of Montana, North Dakota, South Dakota, and Wyoming. U.S. Geological Survey Professional Paper 1273-G. https://pubs.usgs.gov/pp/1273g/report.pdf (1982).

  • Doyle, W. W. Ground water in the Arica Area, Chile. Article number 170. Short Papers in Geology and Hydrology Articles 122–172. U.S. Geological Survey Professional Paper 475-D, D213–D215 (1964).

  • Driscoll, D. G., Carter, J. M., Williamson, J. E. & Putnam, L. D. Hydrology of the Black Hills area, South Dakota. U.S. Geological Survey Water-Resources Investigations Report 2002-4094. https://pubs.usgs.gov/wri/wri024094/pdf/wri024094.pdf (2002).

  • Duell Jr, L. F. W. Geohydrology of the Antelope Valley area, California, and design for a ground-water-quality monitoring network. U.S. Geological Survey Water-Resources Investigations Report 84-4081. https://pubs.usgs.gov/wri/1984/4081/report.pdf (1987).

  • Dumont, A., Salmoral, G. & Llamas, M. R. The water footprint of a river basin with a special focus on groundwater: the case of Guadalquivir basin (Spain). Water Resour. Ind. 1, 60–76 (2013).

    Google Scholar 

  • Dunlop, G., Palanichamy, J., Kokkat, A., James, E. J. & Palani, S. Simulation of saltwater intrusion into coastal aquifer of Nagapattinam in the lower cauvery basin using SEAWAT. Groundw. Sustain. Dev. 8, 294–301 (2019).

    Google Scholar 

  • Duque, C., Calvache, M. L. & Engesgaard, P. Investigating river–aquifer relations using water temperature in an anthropized environment (Motril-Salobreña aquifer). J. Hydrol. 381, 121–133 (2010).

    ADS 

    Google Scholar 

  • Duraiswami, R. A., Das, S. & Shaikh, T. Hydrogeological framework of aquifers from the Deccan Traps, India: some insights. Mem. Geol. Soc. India, 1–15 (2012).

  • Dustin, J. D. Hydrogeology of Utah Lake with Emphasis on Goshen Bay. PhD dissertation, Brigham Young Univ. (1978).

  • Dutta, P. K. et al. Resolving Kamthi-related problems in Gondwana stratigraphy of peninsular India. Indian J. Geosci. 69, 85–102 (2015).

    Google Scholar 

  • Ebadati, N. & Sepavandi, S. Role of geological structures and lithology in the quantitative and qualitative changes of Eshtehard aquifers. Iran. J. Ecohydrol. 2, 117–128 (2015).

    Google Scholar 

  • Ebrahim, G. Y., Villholth, K. G. & Boulos, M. Integrated hydrogeological modelling of hard-rock semi-arid terrain: supporting sustainable agricultural groundwater use in Hout catchment, Limpopo Province, South Africa. Hydrol. J. 27, 965–981 (2019).

    ADS 

    Google Scholar 

  • Ebrahimi Varzane, S., Zarei, H., TishehZan, P. & Akhondali, A. M. Evaluation of groundwater-surface water interaction by using cluster analysis (case study: western part of Dezful-Andimeshk plain). Iran Water Resour. Res. 15, 246–257 (2019).

    Google Scholar 

  • Ebrahimi, M., Kazemi, H., Ehtashemi, M. & Rockaway, T. D. Assessment of groundwater quantity and quality and saltwater intrusion in the Damghan basin, Iran. Geochemistry 76, 227–241 (2016).

    CAS 

    Google Scholar 

  • Echogdali, F. Z. et al. Characterization and productivity of alluvial aquifers in sustainability oasis areas: a case study of the Tata watershed (southeast Morocco). Appl. Sci. 13, 5473 (2023).

    CAS 

    Google Scholar 

  • Edalat, A., Khodaparast, M. & Rajabi, A. M. Scenarios to control land subsidence using numerical modeling of groundwater exploitation: Aliabad plain (in Iran) as a case study. Environ. Earth Sci. 79, 1–12 (2020).

    Google Scholar 

  • Ehya, F. & Saeedi, F. Assessment of groundwater quality in the Garmez area (Southeastern Khuzestan province, SW Iran) for drinking and irrigation uses. Carbonates Evaporites 34, 1443–1454 (2019).

    CAS 

    Google Scholar 

  • Eimers, J. L., Daniel III, C. C. & Coble, R. W. Hydrogeology and simulation of ground-water flow at U.S. Marine Corps Air Station, Cherry Point, North Carolina, 1987-90. U.S. Geological Survey Water-Resources Investigations Report 94-4186. https://pubs.usgs.gov/wri/1994/4186/report.pdf (1994).

  • El Mahdad, E. et al. in The Souss‐Massa River Basin, Morocco (eds Choukr-Allah, R., Ragab, R., Bouchaou, L. & Barceló, D.) 303–333 (Springer, 2017).

  • Ellis, J. H. et al. Hydrogeology and simulation of groundwater flow and analysis of projected water use for the Canadian River alluvial aquifer, western and central Oklahoma. U.S. Geological Survey Scientific Investigations Report 2016-5180. https://pubs.usgs.gov/sir/2016/5180/sir20165180.pdf (2017).

  • Emami, S., Hemmati, M. & Arvanaghi, H. Performance evaluation of Imperialist Competitive and Genetic algorithm for estimating groundwater quality parameters (case study: Bostanabad plain). Hydrogeology 2, 44–53 (2018).

    Google Scholar 

  • Erostate, M. et al. Delayed nitrate dispersion within a coastal aquifer provides constraints on land-use evolution and nitrate contamination in the past. Sci. Total Environ. 644, 928–940 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Eslamizadeh, A. & Samanirad, S. Land subsidence and fissuring due to ground water withdrawal in Yazd-Ardakan basin, central Iran. World Acad. Sci. Eng. Technol. 48, 489–492 (2010).

    Google Scholar 

  • Esmaeili-Vardanjani, M., Rasa, I., Yazdi, M. & Pazand, K. The hydrochemical assessment of groundwater resources in the Kadkan basin, Northeast of Iran. Carbonates Evaporites 31, 129–138 (2016).

    CAS 

    Google Scholar 

  • Esteban, E. & Albiac, J. The problem of sustainable groundwater management: the case of La Mancha aquifers, Spain. Hydrol. J. 20, 851–863 (2012).

    ADS 

    Google Scholar 

  • Esteve, P., Varela-Ortega, C., Blanco-Gutiérrez, I. & Downing, T. E. A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture. Ecol. Econ. 120, 49–58 (2015).

    Google Scholar 

  • Evans, S. Baroota Groundwater Resource – Monitoring Review and Augmentation. Department of Water, Land and Biodiversity Conservation Report No. 2004/56. https://www.waterconnect.sa.gov.au/Content/Publications/DEW/dwlbc_report_2004_56.pdf (2004).

  • Everett, R. R. et al. Geology, water-quality, hydrology, and geomechanics of the Cuyama Valley groundwater basin, California, 2008–12. U.S. Geological Survey Scientific Investigations Report 2013-5108. https://pubs.usgs.gov/sir/2013/5108/pdf/sir2013-5108.pdf (2013).

  • Ezquerro, P. et al. Groundwater and subsidence modeling combining geological and multi-satellite SAR data over the alto Guadalentín Aquifer (SE Spain). Geofluids, 1359325. https://doi.org/10.1155/2017/1359325 (2017).

  • Faghihi, N., Kave, F. & Babazadeh, H. Prediction of aquifer reaction to different hydrological and management scenarios using visual MODFLOW model-case study of Qazvin plain. J. Water Sci. Res. 2, 39–45 (2010).

    Google Scholar 

  • Fallahi, M. M., Shabanlou, S., Rajabi, A., Yosefvand, F. & IzadBakhsh, M. A. Effects of climate change on groundwater level variations affected by uncertainty (case study: Razan aquifer). Appl. Water Sci. 13, 143 (2023).

    ADS 

    Google Scholar 

  • Fang, J. & Ding, Y. J. Assessment of groundwater contamination by NO3 using geographical information system in the Zhangye Basin, Northwest China. Environ. Earth Sci. 60, 809–816 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Faunt, C. C. et al. Hydrogeology, hydrologic effects of development, and simulation of groundwater flow in the Borrego Valley, San Diego County, California. U.S. Geological Survey Scientific Investigations Report 2015-5150. https://pubs.usgs.gov/sir/2015/5150/sir20155150.pdf (2015).

  • Fayaji, I., Sayadi, M. H. & Mousazadeh, H. Potable groundwater analysis using multivariate Groundwater Quality Index technique. Glob. J. Environ. Sci. Manag. 5, 357–370 (2019).

    CAS 

    Google Scholar 

  • Feitosa, F. A., Diniz, J. A. O., Kirchheim, R. E., Kiang, C. H. & Feitosa, E. C. in Groundwater Assessment, Modeling, and Management (eds Thangarajan, M. & Singh, V. P.) 33–57 (Routledge, 2016).

  • Fenelon, J. M. et al. Hydrogeologic atlas of aquifers in Indiana. U.S. Geological Survey Water-Resources Investigations Report 92-4142. https://pubs.er.usgs.gov/publication/wri924142 (1994).

  • Fenneman, N. M. & Johnson, D. W. Physiographic divisions of the conterminous United States. U.S. Geological Survey map, 1:7,000,000 scale (1946).

  • Ferguson, G. A., Betcher, R. N. & Grasby, S. E. Hydrogeology of the Winnipeg formation in Manitoba, Canada. Hydrol. J. 15, 573 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Fernández‐Chacón, F. et al. Isotopic composition (δ18O and δD) of precipitation and groundwater in a semi‐arid, mountainous area (Guadiana Menor basin, Southeast Spain). Hydrol. Process. 24, 1343–1356 (2010).

    ADS 

    Google Scholar 

  • Ferreira, A. L. Parnaiba Basin. Presentation at “Round 15 – Brazil: Oil and Gas Concessions”. http://www.anp.gov.br/images/Palestras/Seminario_tecnico_R15_P4/Ingles/06_Bacia_do_Parnaiba_R15_INGLES.pdf (2018).

  • Ferris, D., Lypka, M. & Ferguson, G. Hydrogeology of the Judith River formation in southwestern Saskatchewan, Canada. Hydrol. J. 25, 1985–1995 (2017).

    ADS 

    Google Scholar 

  • Fijani, E., Moghaddam, A. A., Tsai, F. T. C. & Tayfur, G. Analysis and assessment of hydrochemical characteristics of Maragheh-Bonab plain aquifer, northwest of Iran. Water Resour. Manag. 31, 765–780 (2017).

    Google Scholar 

  • Fijani, E., Nadiri, A. A., Moghaddam, A. A., Tsai, F. T. C. & Dixon, B. Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh–Bonab plain aquifer, Iran. J. Hydrol. 503, 89–100 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Finch, S. T., Mccoy, A. & Melis, E. Geologic controls on ground-water flow in the Mimbres Basin, southwestern New Mexico. New Mexico Geological Society Guide Book, 59th Field Conference, 189–198. https://nmgs.nmt.edu/publications/guidebooks/downloads/59/59_p0189_p0198.pdf (2008).

  • Fisher, C. A. Geology and water resources of the Bighorn Basin, Wyoming. U.S. Geological Survey Professional Paper 53. https://pubs.usgs.gov/pp/0053/report.pdf (1906).

  • Fix, P. F., Nelson, W. B., Lofgren, B. E. & Butler, R. G. Ground water in the Escalante Valley, Beaver, Iron, and Washington Counties, Utah. Technical Publication 6. https://waterrights.utah.gov/docSys/v920/w920/w9200085.pdf (1950).

  • Flint, L. E. et al. Geohydrology of Big Bear Valley, California: phase 1—geologic framework, recharge, and preliminary assessment of the source and age of groundwater. U.S. Geological Survey Scientific Investigations Report 2012-5100. https://pubs.usgs.gov/sir/2012/5100/pdf/sir20125100.pdf (2012).

  • Flora, S. & Davis, T. Hydrologic Map Series (HMS), Water Level Change Map Series (WLCMS), and Basin Sweep Assessment Report ADWR Basins and Sub-Basins. Arizona Department of Water Resources Hydrology Division Field Services Section. https://www.azwater.gov/content/hms-wlcms-and-basin-sweep-assessment-report-2009 (2009).

  • Florea, L. J., Hasenmueller, N. R., Branam, T. D., Frushour, S. S. & Powell, R. L. in GSA Field Guide: Ancient Oceans, Orogenic Uplifts, and Glacial Ice: Geologic Crossroads in America’s Heartland Vol. 51 (ed. Florea, L. J.) 95–112 (Geological Society of America, 2018).

  • Flores-Márquez, E. L. et al. Numerical modeling of Etla Valley aquifer, Oax., Mexico: evolution and remediation scenarios. Geofís. Int. 47, 27–40 (2008).

    Google Scholar 

  • Fontes, S. L., Meju, M. A., Maurya, V. P., La Terra, E. F. & Miquelutti, L. G. Deep structure of Parecis Basin, Brazil from 3D magnetotelluric imaging. J. S. Am. Earth Sci. 96, 102381 (2019).

    Google Scholar 

  • Fortin, G., Van Der Kamp, G. & Cherry, J. A. Hydrogeology and hydrochemistry of an aquifer-aquitard system within glacial deposits, Saskatchewan, Canada. J. Hydrol. 126, 265–292 (1991).

    ADS 
    CAS 

    Google Scholar 

  • Foster, S. Thailand: strengthening capacity in groundwater resources management. World Bank Case Profile Collection Number 1. https://documents1.worldbank.org/curated/en/521371468308952444/pdf/388010PAPER0TH1WMATE1CP10101PUBLIC1.pdf (2002).

  • Foster, S., Garduño, H. & Tuinhof, A. Confronting the groundwater management challenge in the Deccan Traps Country of Maharashtra – India. World Bank Case Profile Collection Number 18 (2007).

  • Fram, M. S. & Belitz, K. Groundwater quality in the Coastal Los Angeles Basin, California. U.S. Geological Survey Fact Sheet 2012-3096. https://pubs.er.usgs.gov/publication/70039952 (2008).

  • Frei, R. et al. The link between surface water and groundwater-based drinking water–strontium isotope spatial distribution patterns and their relationships to Danish sediments. Appl. Geochem. 121, 104698 (2020).

    CAS 

    Google Scholar 

  • Frick, E. Quantitative analysis of groundwater flow in valley-fill deposits in Steptoe Valley, Nevada. Doctoral dissertation, Univ. Nevada (1985).

  • Frimpter, M. H. & Gay, F. B. Chemical quality of ground water on Cape Cod, Massachusetts. U.S. Geological Survey Water-Resources Investigations Report 79-65. https://pubs.usgs.gov/wri/1979/0065/report.pdf (1979).

  • Fuchs, E. H., King, J. P. & Carroll, K. C. Quantifying disconnection of groundwater from managed‐ephemeral surface water during drought and conjunctive agricultural use. Water Resour. Res. 55, 5871–5890 (2019).

    ADS 

    Google Scholar 

  • Fuentes-Arreazola, M. A., Ramírez-Hernández, J. & Vázquez-González, R. Hydrogeological properties estimation from groundwater level natural fluctuations analysis as a low-cost tool for the Mexicali Valley aquifer. Water 10, 586 (2018).

    Google Scholar 

  • Fürst, J., Bichler, A. & Konecny, F. Regional frequency analysis of extreme groundwater levels. Groundwater 53, 414–423 (2015).

    Google Scholar 

  • Furuno, K., Kagawa, A., Kazaoka, O., Kusuda, T. & Nirei, H. Groundwater management based on monitoring of land subsidence and groundwater levels in the Kanto Groundwater Basin, Central Japan. Proc. Int. Assoc. Hydrol. Sci. 372, 53–57 (2015).

    Google Scholar 

  • Gale, I. N. & Rutter, H. K. The Chalk aquifer of Yorkshire. British Geological Survey Research Report RR/06/04. http://nora.nerc.ac.uk/id/eprint/3700/1/RR06004.pdf (2006).

  • Gan, Y. et al. Hydrogeochemistry and arsenic contamination of groundwater in the Jianghan Plain, central China. J. Geochem. Explor. 138, 81–93 (2014).

    CAS 

    Google Scholar 

  • Gannett, M. W., Lite, K. E., La Marche, J. L., Fisher, B. J. & Polette, D. J. Ground-water hydrology of the upper Klamath Basin, Oregon and California. U.S. Geological Survey Scientific Investigations Report 2007-5050. https://pubs.usgs.gov/sir/2007/5050/pdf/sir20075050.pdf (2007).

  • Gannett, M. W. & Breen, K. H. Groundwater levels, trends, and relations to pumping in the Bureau of Reclamation Klamath Project, Oregon and California. U.S. Geological Survey Open-File Report 2015-1145. https://pubs.usgs.gov/of/2015/1145/ofr20151145.pdf (2015).

  • Gannett, M. W., Lite Jr, K. E., Morgan, D. S. & Collins, C. A. Ground-water hydrology of the upper Deschutes Basin, Oregon. U.S. Geological Survey Water-Resources Investigations Report 00-4162. https://pubs.usgs.gov/wri/wri004162/ (2001).

  • Gao, X., Wang, Y., Li, Y. & Guo, Q. Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China. Environ. Geol. 53, 795–803 (2007).

    ADS 
    CAS 

    Google Scholar 

  • García-Meléndez, E., Ferrer Julià, M., Goy, J. L. & Zazo, C. Reconstrucción morfoestructural mediante modelos de elevación digital en un SIG del fondo de la cuenca sedimentaria de la Cubeta del Saltador (Cordilleras Béticas Orientales). https://digital.csic.es/handle/10261/247828 (2002).

  • Gardner, P. M. & Kirby, S. Hydrogeologic and geochemical characterization of groundwater resources in Rush Valley, Tooele County, Utah. U.S. Geological Survey Scientific Investigations Report 2011-5068. https://pubs.usgs.gov/sir/2011/5068/pdf/sir20115068.pdf (2011).

  • Gardner, P. M. & Masbruch, M. D. Hydrogeologic and geochemical characterization of groundwater resources in Deep Creek Valley and adjacent areas, Juab and Tooele Counties, Utah, and Elko and White Pine Counties, Nevada. U.S. Geological Survey Scientific Investigations Report 2015-5097. https://pubs.usgs.gov/sir/2015/5097/sir20155097.pdf (2015).

  • Garduño, H. & Foster, S. Sustainable groundwater irrigation. Approaches to reconciling demand with resources. GW•MATE Strategic Overview Series Number 4, World Bank. https://openknowledge.worldbank.org/server/api/core/bitstreams/a6957092-3680-52cd-9707-91143c386175/content (2010).

  • Garzon-Vidueira, R. et al. Identification of nitrates origin in Limia river basin and pollution-determinant factors. Agric. Ecosyst. Environ. 290, 106775 (2020).

    CAS 

    Google Scholar 

  • Gastmans, D., Chang, H. K. & Hutcheon, I. Stable isotopes (2H, 18O and 13C) in groundwaters from the northwestern portion of the Guarani Aquifer System (Brazil). Hydrol. J. 18, 1497–1513 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Geological Survey of Alabama. Assessment of groundwater resources in Alabama, 2010-16. Geological Survey of Alabama Bulletin 186. https://www.gsa.state.al.us/img/Groundwater/docs/assessment/00_B186_StatewideAssessment_Print_Document.pdf (2018).

  • George, B. G., Ray, J. S. & Kumar, S. Geochemistry of carbonate formations of the Chhattisgarh Supergroup, central India: implications for Mesoproterozoic global events. Can. J. Earth Sci. 56, 335–346 (2019).

    ADS 
    CAS 

    Google Scholar 

  • George, M. E., Babu, D. S., Akhil, T. & Rafeeque, M. K. Investigation on submarine groundwater discharge at Kozhikkode Coastal Aquifer, SW Western Ghats. J. Geol. Soc. India 92, 626–633 (2018).

    Google Scholar 

  • Gerber, R. E. & Howard, K. Hydrogeology of the Oak Ridges Moraine aquifer system: implications for protection and management from the Duffins Creek watershed. Can. J. Earth Sci. 39, 1333–1348 (2002).

    ADS 

    Google Scholar 

  • Ghadimi, F. & Ghomi, M. Statistical analysis of the hydrogeochemical evolution of groundwater in alluvial aquifer of Arak Mighan playa, Markazi province, Iran. J. Water Sci. Res. 4, 31–45 (2012).

    Google Scholar 

  • Ghafari, S., Banihabib, M. E. & Javadi, S. A framework to assess the impact of a hydraulic removing system of contaminate infiltration from a river into an aquifer (case study: Semnan aquifer). Groundw. Sustain. Dev. 10, 100301 (2020).

    Google Scholar 

  • Ghafari, S., Moradi, H. & Modares, R. Comparison of temporal and spatial changes of groundwater level in Isfahan-Borkhar, Najafabad and Chadegan Plains. Phys. Geogr. Res. Q. 50, 141–160 (2018).

    Google Scholar 

  • Ghanbari, N., Rangzan, K., Kabolizade, M. & Moradi, P. Improve the results of the DRASTIC model using artificial intelligence methods to assess groundwater vulnerability in Ramhormoz alluvial aquifer plain. J. Water Soil Conserv. 24, 45–65 (2017).

    Google Scholar 

  • Ghazavi, R. & Ebrahimi, Z. Assessing groundwater vulnerability to contamination in an arid environment using DRASTIC and GOD models. Int. J. Environ. Sci. Technol. 12, 2909–2918 (2015).

    CAS 

    Google Scholar 

  • Ghazaw, Y. M., Ghumman, A. R., Al-Salamah, I. & Khan, Q. U. Investigations of impact of recharge wells on groundwater in Buraydah by numerical modeling. Arab. J. Sci. Eng. 39, 713–724 (2014).

    Google Scholar 

  • Ghazifard, A., Moslehi, A., Safaei, H. & Roostaei, M. Effects of groundwater withdrawal on land subsidence in Kashan Plain, Iran. Bull. Eng. Geol. Environ. 75, 1157–1168 (2016).

    Google Scholar 

  • Ghobadi, A., Cheraghi, M., Sobhanardakani, S., Lorestani, B. & Merrikhpour, H. Hydrogeochemical characteristics, temporal, and spatial variations for evaluation of groundwater quality of Hamedan–Bahar Plain as a major agricultural region, West of Iran. Environ. Earth Sci. 79, 428 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Gholami, F. & Malekian, A. Assessment of spatio-temporal oscillations and physico-chemical properties of Azna-Aligudarz basin. Desert Ecosyst. Eng. J. 7, 57–70 (2018).

    Google Scholar 

  • Gholami, V. C. K. W., Chau, K. W., Fadaee, F., Torkaman, J. & Ghaffari, A. Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers. J. Hydrol. 529, 1060–1069 (2015).

    ADS 

    Google Scholar 

  • Ghoochanian, E., Etebari, B. & Akbarpour, A. Integrating groundwater management with WEAP and MODFLOW models (case study: Birjand Plain, east of Iran). MODFLOW and More, 2–5 (2013).

  • Ghorbani, H. & Sadabad, S. M. Annual changes in some qualitative parameters of groundwater in Shirvan Plain North East of Iran. World Acad. Eng. Technol. 68, 949–952 (2010).

    Google Scholar 

  • Gill, H. E. & Farlekas, G. M. Geohydrologic maps of the Potomac-Raritan-Magothy aquifer system in the New Jersey Coastal Plain. U.S. Geological Survey Hydrologic Atlas 557. https://pubs.er.usgs.gov/publication/ha557 (1976).

  • Giménez-Forcada, E. Space/time development of seawater intrusion: a study case in Vinaroz coastal plain (Eastern Spain) using HFE-Diagram, and spatial distribution of hydrochemical facies. J. Hydrol. 517, 617–627 (2014).

    ADS 

    Google Scholar 

  • Giménez-Forcada, E. Use of the Hydrochemical Facies Diagram (HFE-D) for the evaluation of salinization by seawater intrusion in the coastal Oropesa Plain: comparative analysis with the coastal Vinaroz Plain, Spain. HydroResearch 2, 76–84 (2019).

    Google Scholar 

  • Gingerich, S. B. The effects of withdrawals and drought on groundwater availability in the Northern Guam Lens Aquifer, Guam. U.S. Geological Survey Scientific Investigations Report 2013-5216. https://pubs.usgs.gov/sir/2013/5216/pdf/sir2013-5216.pdf (2013).

  • Goderniaux, P., Orban, P., Rorive, A., Brouyère, S. & Dassargues, A. Study of historical groundwater level changes in two Belgian chalk aquifers in the context of climate change impacts. Geol. Soc. Lond. Spec. Publ. 517, 203–211 (2023).

    Google Scholar 

  • Godfrey, L. V. et al. δ13C and 14C activity of groundwater DOC and DIC in the volcanically active and arid Loa Basin of northern Chile. J. Hydrol. 595, 125987 (2021).

    CAS 

    Google Scholar 

  • Godfrey, L. & van Dyk, G. Reserve determination for the Pomfret-Vergelegen Dolomitic Aquifer, North West province. Report No ENV-P-C 2002 -031. https://scholar.ufs.ac.za/bitstream/handle/11660/7396/Tosca%20Reserve%20Report.pdf?sequence=6&isAllowed=y (2002).

  • Golchin, I. & Moghaddam, M. A. Hydro-geochemical characteristics and groundwater quality assessment in Iranshahr plain aquifer, Iran. Environ. Earth Sci. 75, 317 (2016).

    ADS 

    Google Scholar 

  • Golder Associates and Summit Environmental Consultants Ltd. Phase 2 Okanagan Water Supply and Demand Project: Groundwater Objectives 2 and 3 Basin Study. Report to Okanagan Basin Water Board. https://www.obwb.ca/wsd/about/project-reports (2009).

  • Gomo, M. & Vermeulen, D. A transboundary aquifer of potential concern in Southern Africa. Water Policy 19, 1160–1171 (2017).

    Google Scholar 

  • Gonçalves, R. D., Teramoto, E. H. & Chang, H. K. Regional groundwater modeling of the Guarani Aquifer System. Water 12, 2323 (2020).

    Google Scholar 

  • González-Trinidad, J., Pacheco-Guerrero, A., Júnez-Ferreira, H., Bautista-Capetillo, C. & Hernández-Antonio, A. Identifying groundwater recharge sites through environmental stable isotopes in an alluvial aquifer. Water 9, 569 (2017).

    Google Scholar 

  • Gopinath, S. et al. Hydrochemical characteristics and salinity of groundwater in parts of Nagapattinam district of Tamil Nadu and the Union Territory of Puducherry, India. Carbonates Evaporites 33, 1–13 (2018).

    CAS 

    Google Scholar 

  • Gordon, A. D., Carleton, G. B. & Rosman, R. Water-level conditions in the confined aquifers of the New Jersey Coastal Plain, 2013. U.S. Geological Survey Scientific Investigations Report 2019-5146. https://pubs.usgs.gov/sir/2019/5146/sir20195146.pdf (2021).

  • Gordon, C. H. Geology and underground waters of the Wichita region, north-central Texas. U.S. Geological Survey Water-Supply Paper 317. https://pubs.usgs.gov/wsp/0317/report.pdf (1913).

  • Goswami, S., Dey, S., Zakaulla, S. & Verma, M. B. Active rifting and bimodal volcanism in Proterozoic Papaghni sub-basin, Cuddapah basin (Andhra Pradesh), India. J. Earth Syst. Sci. 129, 21 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Goumehei, E., Geravandi, Y. & Wanglin, Y. A. N. A GIS-based study to investigate effect of water table changes on DRASTIC model: a case study of Kermanshah, Iran. Int. J. Environ. Geoinformatics 3, 1–10 (2016).

    Google Scholar 

  • Government of Western Australia’s Department of Water. Northern Perth Basin: geology, hydrogeology and groundwater resources. Department of Water Hydrological Bulletin Series Report No. HB1. https://www.wa.gov.au/system/files/2022-04/Northern%20Perth%20Basin%20-%20geology%2C%20hydrogeology%20and%20groundwater%20resources.pdf (2017).

  • Government of Western Australia’s Department of Water. West Canning Basin groundwater allocation limit report. Water resource allocation and planning report series, Report No. 52. https://www.wa.gov.au/system/files/2022-10/West-Canning-Basin-groundwater-allocation-limit-report.pdf (2012).

  • Graham, W. G. & Campbell, L. J. Groundwater resources of Idaho. Idaho Department of Water Resources report. https://idwr.idaho.gov/wp-content/uploads/sites/2/publications/198108-MISC-GW-Resources-ID.pdf (1981).

  • Grande, J. A., González, A., Beltran, R. & Sánchez‐Rodas, D. Application of factor analysis to the study of contamination in the aquifer system of Ayamonte‐Huelva (Spain). Groundwater 34, 155–161 (1996).

    CAS 

    Google Scholar 

  • Grasby, S. E. & Betcher, R. N. Regional hydrogeochemistry of the carbonate rock aquifer, southern Manitoba. Can. J. Earth Sci. 39, 1053–1063 (2002).

    ADS 
    CAS 

    Google Scholar 

  • Grasby, S. E., Chen, Z., Hamblin, A. P., Wozniak, P. R. & Sweet, A. R. Regional characterization of the Paskapoo bedrock aquifer system, southern Alberta. Can. J. Earth Sci. 45, 1501–1516 (2008).

    ADS 

    Google Scholar 

  • Graves, R. P. Ground-water resources in Lajas Valley, Puerto Rico. U.S. Geological Survey Water-Resources Investigations Report 89-4182. https://pubs.usgs.gov/wri/1989/4182/report.pdf (1991).

  • Gray, H. H. Map of Indiana showing physiographic divisions. Indiana Geological Survey Miscellaneous Map 69. https://scholarworks.iu.edu/dspace/bitstream/handle/2022/27232/SR61_A1b.pdf (2001).

  • Great Barrier Reef Marine Park Authority. Plane Basin Assessment. Mackay Whitsunday Natural Resource Management Region report. https://elibrary.gbrmpa.gov.au/jspui/bitstream/11017/2902/2/Plane-Basin-assessment-2013.pdf (2013).

  • Greenman, D. W., Bennett, G. D. & Swarzenski, W. V. Ground-water hydrology of the Punjab, West Pakistan, with emphasis on problems caused by canal irrigation. U.S. Geological Survey Water-Supply Paper 1608-H. https://pubs.usgs.gov/wsp/1608h/report.pdf (1967).

  • Grenholm, O. H. M. The geodynamic evolution of a Paleoproterozoic orogenic system – a local to global perspective on the ca. 2.27-1.96 Ga Birimian Orogen in the Baoule Mossi domain of West Africa. Thesis, Univ. Western Australia (2019).

  • Guerrero-Martínez, L., Hernández-Marín, M. & Burbey, T. J. Estimation of natural groundwater recharge in the Aguascalientes semiarid valley, Mexico. Rev. Mex. Cienc. Geol. 35, 268–278 (2018).

    Google Scholar 

  • Güler, C. & Thyne, G. D. Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells-Owens Valley area, southeastern California, USA. J. Hydrol. 285, 177–198 (2004).

    ADS 

    Google Scholar 

  • Gunnink, J. L., Pham, H. V., Oude Essink, G. H. & Bierkens, M. F. The three-dimensional groundwater salinity distribution and fresh groundwater volumes in the Mekong Delta, Vietnam, inferred from geostatistical analyses. Earth Syst. Sci. Data 13, 3297–3319 (2021).

    ADS 

    Google Scholar 

  • Guo, C., Shi, J., Zhang, Z. & Zhang, F. Using tritium and radiocarbon to determine groundwater age and delineate the flow regime in the Taiyuan Basin, China. Arab. J. Geosci. 12, 185 (2019).

    Google Scholar 

  • Guo, H. & Wang, Y. Geochemical characteristics of shallow groundwater in Datong basin, northwestern China. J. Geochem. Explor. 87, 109–120 (2005).

    CAS 

    Google Scholar 

  • Guo, H. et al. Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia. Environ. Pollut. 159, 876–883 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Guo, Q., Wang, Y., Ma, T. & Ma, R. Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. J. Geochem. Explor. 93, 1–12 (2007).

    CAS 

    Google Scholar 

  • Gupta, G., Erram, V. C. & Kumar, S. Temporal geoelectric behaviour of dyke aquifers in northern Deccan Volcanic Province, India. J. Earth Syst. Sci. 121, 723–732 (2012).

    ADS 

    Google Scholar 

  • Gupta, P., Sharma, A. & Joshi, N. Hydrochemical characterization of coastal groundwater in Porbandar Region, Gujarat, India. Int. J. Eng. Res. Gen. Sci. 3, 325–331 (2015).

    Google Scholar 

  • Gupta, S. K. & Deshpande, R. D. Origin of groundwater helium and temperature anomalies in the Cambay region of Gujarat, India. Chem. Geol. 198, 33–46 (2003).

    ADS 
    CAS 

    Google Scholar 

  • Gupte, P. R. Review of aquifer system of Deccan trap area, Gujarat state. Proceedings of the Fifth International Ground Water Congress (2012).

  • Gutentag, E. D., Heimes, F. J., Krothe, N. C., Luckey, R. R. & Weeks, J. B. Geohydrology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. U.S. Geological Survey Professional Paper 1400-B. https://pubs.usgs.gov/pp/1400b/report.pdf (1984).

  • Gxokwe, S., Xu, Y. & Kanyerere, T. Scenarios analysis using water-sensitive urban design principles: a case study of the Cape Flats Aquifer in South Africa. Hydrogeol. J. 28, 2009–2023 (2020).

    ADS 

    Google Scholar 

  • Ha, Q. K., Ngoc, T. D. T., Le Vo, P., Nguyen, H. Q. & Dang, D. H. Groundwater in Southern Vietnam: understanding geochemical processes to better preserve the critical water resource. Sci. Total Environ. 807, 151345 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Habermehl, M. A. The evolving understanding of the Great Artesian Basin (Australia), from discovery to current hydrogeological interpretations. Hydrol. J. 28, 13–36 (2020).

    Google Scholar 

  • Hafezparast, M. Monitoring groundwater level changes of Mianrahan aquifer with GRACE satellite data. Iran. J. Irrig. Drain. 2, 428–443 (2021).

    Google Scholar 

  • Halford, K. J. & Barber, N. L. Analysis of ground-water flow in the Catahoula aquifer system in the vicinity of Laurel and Hattiesburg, Mississippi. U.S. Geological Survey Water-Resources Investigations Report 94-4219. https://pubs.usgs.gov/wri/1994/4219/report.pdf (1995).

  • Hamid Reza, N. & Ferdows, S. N. Comparing vulnerability delineative of aquifer using drastic and fuzzy logic methods (case study: Gulgir Plain of Masjed Solieman, Iran). Proceedings of conference entitled “GIS Ostrava 2012 – Surface models for geosciences”. http://gisak.vsb.cz/GIS_Ostrava/GIS_Ova_2012/sbornik/papers/nassery.pdf (2012).

  • Hamlin, H. Water resources of the Salinas Valley, California. U.S. Geological Survey Water-Supply and Irrigation Paper No. 89. https://pubs.usgs.gov/wsp/0089/report.pdf (1904).

  • Hamlin, S. N. Ground-water quality in the Santa Rita, Buellton, and Los Olivos hydrologic subareas of the Santa Ynez River basin, Santa Barbara County, California. U.S. Geological Survey Water-Resources Investigations Report 84-4131. https://pubs.usgs.gov/wri/1984/4131/report.pdf (1985).

  • Han, D. M., Song, X. F., Currell, M. J., Yang, J. L. & Xiao, G. Q. Chemical and isotopic constraints on evolution of groundwater salinization in the coastal plain aquifer of Laizhou Bay, China. J. Hydrol. 508, 12–27 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Han, Y. L., Kuo, M. T., Fan, K. C., Chiang, C. J. & Lee, Y. P. Radon distribution in groundwater of Taiwan. Hydrol. J. 14, 173–179 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Handman, E. H., Londquist, C. J. & Maurer, D. K. Ground-water resources of Honey Lake Valley, Lassen County, California, and Washoe County, Nevada. U.S. Geological Survey Water-Resources Investigations Report 90-4050. https://pubs.usgs.gov/wri/1990/4050/report.pdf (1990).

  • Hanna, J. Influence of Conceptual Model Uncertainty on Recharge Processes for the Wallal Aquifer System in the West Canning Basin, Western Australia. MSc thesis, Univ. Western Australia (2014).

  • Hanson, R. T. Hydrologic framework of the Santa Clara Valley, California. Geosphere 11, 606–637 (2015).

    ADS 

    Google Scholar 

  • Hanson, R. T. Aquifer-system compaction, Tucson Basin and Avra Valley, Arizona. U.S. Geological Survey Water-Resources Investigations Report 88-4172. https://pubs.usgs.gov/wri/1988/4172/report.pdf (1989).

  • Hanson, R. T., Martin, P. & Koczot, K. M. Simulation of ground-water/surface-water flow in the Santa Clara-Calleguas ground-water basin, Ventura County, California. U.S. Geological Survey Water-Resources Investigations Report 2002-4136. https://pubs.usgs.gov/wri/wri024136/wrir024136.pdf (2002).

  • Hanson, R. T., McLean, J. S. & Miller, R. S. Hydrogeologic framework and preliminary simulation of ground-water flow in the Mimbres Basin, Southwestern New Mexico. U.S. Geological Survey Water-Resources Investigations Report 94-4011. https://pubs.usgs.gov/wri/1994/4011/report.pdf (1994).

  • Han-xue, Q., Dong-yan, L., Guan-qun, L. & Pi-hai, N. Saline water intrusion and its influence in the Laizhou area. Chin. J. Oceanol. Limnol. 15, 342–349 (1997).

    Google Scholar 

  • Hao, L., Sun, G., Liu, Y. & Qian, H. Integrated modeling of water supply and demand under management options and climate change scenarios in Chifeng City, China. J. Am. Water Resour. Assoc. 51, 655–671 (2015).

    ADS 

    Google Scholar 

  • Harden, S. L., Fine, J. M. & Spruill, T. B. Hydrogeology and ground-water quality of Brunswick County, North Carolina. U.S. Geological Survey Water-Resources Investigations Report 03-4051. https://pubs.usgs.gov/wri/2003/4051/wri20034051.pdf (2003).

  • Harrill, J. R. & Prudic, D. E. Aquifer systems in the Great Basin region of Nevada, Utah, and adjacent states—summary report. U.S. Geological Survey Professional Paper 1409-A. https://pubs.usgs.gov/pp/1409a/report.pdf (1998).

  • Harrington, G. A., Cook, P. G. & Herczeg, A. L. Spatial and temporal variability of ground water recharge in central Australia: a tracer approach. Groundwater 40, 518–527 (2002).

    CAS 

    Google Scholar 

  • Harrington, G. A., Walker, G. R., Love, A. J. & Narayan, K. A. A compartmental mixing-cell approach for the quantitative assessment of groundwater dynamics in the Otway Basin, South Australia. J. Hydrol. 214, 49–63 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Harrington, G. A., Herczeg, A. L. & Cook, P. G. Groundwater sustainability and water quality in the Ti-Tree Basin, Central Australia. CSIRO report. http://hdl.handle.net/102.100.100/213199?index=1 (1999).

  • Hart Jr, D. L. & Davis, R. E. Geohydrology of the Antlers aquifer (Cretaceous), southeastern Oklahoma. U.S. Geological Survey Circular 81. http://www.ogs.ou.edu/pubsscanned/Circulars/circular81mm.pdf (1981).

  • Harte, P. T., Robinson Jr, G. R., Ayotte, J. D. & Flanagan, S. F. Framework for evaluating water quality of the New England crystalline rock aquifers. U.S. Geological Survey Open-File Report 2008-1282. https://pubs.usgs.gov/of/2008/1282/pdf/ofr2008-1282.pdf (2008).

  • Hasan, M., Shang, Y., Akhter, G. & Jin, W. Application of VES and ERT for delineation of fresh-saline interface in alluvial aquifers of Lower Bari Doab, Pakistan. J. Appl. Geophys. 164, 200–213 (2019).

    ADS 

    Google Scholar 

  • Hashemi, H., Berndtsson, R. & Kompani-Zare, M. Steady-state unconfined aquifer simulation of the Gareh-Bygone Plain, Iran. Open Hydrol. J. 6, 58–67 (2012).

    Google Scholar 

  • Hawley, J. W., Haase, C. S. & Lozinsky, R. P. An underground view of the Albuquerque Basin. Report No. CONF-9411293-TRN: IM9704%%261, 37–55. https://www.osti.gov/biblio/415630 (1995).

  • Hawley, J. W. & Lozinsky, R. P. Hydrogeologic framework of the Mesjlla Basin in New Mexico and western Texas. New Mexico Bureau of Mines and Mineral Resources Open-File Report 323. https://geoinfo.nmt.edu/publications/openfile/downloads/300-399/323/ofr_323.pdf (1992).

  • Hays, P. D., Knierim, K. J., Breaker, B., Westerman, D. A. & Clark, B. R. Hydrogeology and hydrologic conditions of the Ozark Plateaus aquifer system. U.S. Geological Survey Scientific Investigations Report 2016-5137. https://pubs.er.usgs.gov/publication/sir20165137 (2016).

  • Hearne, G. A. et al. Colorado ground-water quality. U.S. Geological Survey Open-File Report 87-716. https://pubs.usgs.gov/of/1987/0716/report.pdf (1987).

  • Heaton, T. H. E. Isotopic and chemical aspects of nitrate in the groundwater of the Springbok Flats. Water SA 11, 199–208 (1985).

    CAS 

    Google Scholar 

  • Heaton, T. H. E., Talma, A. S. & Vogel, J. C. Dissolved gas paleotemperatures and 18O variations derived from groundwater near Uitenhage, South Africa. Quat. Res. 25, 79–88 (1986).

    CAS 

    Google Scholar 

  • Hekmatnia, H., Barzegari Banadkooki, F., Moosavi, V. & Zare Chahouki, A. Evaluation of groundwater suitability for drinking, irrigation, and industrial purposes (case study: Yazd-Ardakan Aquifer, Yazd Province, Iran). ECOPERSIA 9, 11–21 (2021).

    Google Scholar 

  • Helweg, O. J. & Labadie, J. W. A salinity management strategy for stream-aquifer systems. Colorado State University Hydrology Papers. https://mountainscholar.org/bitstream/handle/10217/61846/HydrologyPapers_n84.pdf?sequence=1 (1976).

  • Hemmati, F., Sajadi, Z. & Jamshidi, A. R. Assessment of groundwater vulnerability in the Borazjan Aquifer of Bushehr, south of Iran, using GIS technique. Indian J. Fundam. Appl. Life Sci. 4, 415–425 (2014).

    Google Scholar 

  • Henry, R., Lindsay, K., Wolcott, B., Patten, S. & Baker, T. Walla Walla Basin Aquifer Recharge Strategic Plan. Walla Walla Basin Watershed Council report. https://wwbwc.org/index.php/recharge?highlight=WyJyZWNoYXJnZSIsInN0cmF0ZWdpYyIsInBsYW4iXQ== (2013).

  • Herczeg, A. L., Dogramaci, S. S. & Leaney, F. W. J. Origin of dissolved salts in a large, semi-arid groundwater system: Murray Basin, Australia. Mar. Freshwater Res. 52, 41–52 (2001).

    CAS 

    Google Scholar 

  • Hernández, F. et al. Pesticide residues and transformation products in groundwater from a Spanish agricultural region on the Mediterranean Coast. Int. J. Environ. Anal. Chem. 88, 409–424 (2008).

    Google Scholar 

  • Herrera-Barrientos, J. et al. Determination of hydraulic transmissivity in coastal aquifer by optimal estimation of the Qe-T relationship using Kalman filter. Hidrobiológica 30, 211–219 (2020).

    Google Scholar 

  • Herrera, C. et al. Recharge and residence times of groundwater in hyper arid areas: the confined aquifer of Calama, Loa River Basin, Atacama Desert, Chile. Sci. Total Environ. 752, 141847 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Herrera, E. & Garfias, J. Characterizing a fractured aquifer in Mexico using geological attributes related to open-pit groundwater. Hydrol. J. 21, 1323–1338 (2013).

    ADS 

    Google Scholar 

  • Herrera, M. T. A., Montenegro, I. F., Navar, P. R., Domínguez, I. R. M. & Vázquez, R. T. Contenido de arsénico en el agua potable del valle del Guadiana, México. Tecnol. Cienc. Agua 16, 63–70 (2001).

    Google Scholar 

  • Herrera, N. B. et al. Hydrogeologic framework and selected components of the groundwater budget for the upper Umatilla River Basin, Oregon. U.S. Geological Survey Scientific Investigations Report 2017-5020. https://pubs.usgs.gov/sir/2017/5020/sir20175020.pdf (2017).

  • Herrera, N. B., Burns, E. R. & Conlon, T. D. Simulation of groundwater flow and the interaction of groundwater and surface water in the Willamette Basin and Central Willamette Subbasin, Oregon. U.S. Geological Survey Scientific Investigations Report 2014-5136. https://pubs.usgs.gov/sir/2014/5136/pdf/sir20145136.pdf (2014).

  • Hidalgo, M. C. & Cruz-Sanjulián, J. Groundwater composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza basin, southern Spain). Appl. Geochem. 16, 745–758 (2001).

    ADS 
    CAS 

    Google Scholar 

  • Hirata, R. & Foster, S. The Guarani Aquifer System–from regional reserves to local use. Q. J. Eng. Geol. Hydrogeol. 54, qjegh2020–qjegh2091 (2021).

    Google Scholar 

  • Hirata, R. & Suhogusoff, A. V. How much do we know about the groundwater quality and its impact on Brazilian society today? Acta Limnol. Bras. 31, e109 (2019).

    Google Scholar 

  • Hoffman, S., Hunkeler, D. & Maurer, M. Approvisionnement en eau et assainissement des eaux usées durables en Suisse: défis et mesures possibles. PNR 61 – Synthèse thématique 3 dans le cadre du Programme national de recherche PNR 61. Gestion durable de l’eau. https://media.snf.ch/rWjOZoYQfS9iabW/nfp61_thematische_synthese_3_f.pdf (2014).

  • Holland, M. Hydrogeological Characterisation of Crystalline Basement Aquifers Within the Limpopo Province, South Africa. PhD thesis, Univ. Pretoria (2011).

  • Holmberg, M. J. Hydrogeologic characteristics and geospatial analysis of water-table changes in the alluvium of the lower Arkansas River Valley, southeastern Colorado, 2002, 2008, and 2015. U.S. Geological Survey Scientific Investigations Map 3378. https://pubs.usgs.gov/sim/3378/sim3378.pdf (2017).

  • Holmes, W. F. & Thiros, S. A. Ground-water hydrology of Pahvant Valley and adjacent areas, Utah. U.S. Geological Survey Technical Publication No. 98. https://waterrights.utah.gov/docSys/v920/y920/y9200006.pdf (1990).

  • Honarbakhsh, A. et al. GIS-based assessment of groundwater quality for drinking purpose in northern part of Fars province, Marvdasht. J. Water Supply Res. Technol. AQUA 68, 187–196 (2019).

    Google Scholar 

  • Hood, J. W. Characteristics of aquifers in the northern Uinta Basin area, Utah and Colorado. U.S. Geological Survey and Utah Department of Natural Resources, Division of Water Rights Technical Publication No. 53. https://waterrights.utah.gov/docSys/v920/w920/w920009f.pdf (1976).

  • Hood, J. W. Hydrologic evaluation of Ashley Valley, northern Uinta Basin area, Utah. U.S. Geological Survey and Utah Department of Natural Resources, Division of Water Rights Technical Publication No. 54. https://pubs.usgs.gov/unnumbered/70043723/report.pdf (1977).

  • Hosono, T. et al. Different isotopic evolutionary trends of δ34S and δ18O compositions of dissolved sulfate in an anaerobic deltaic aquifer system. Appl. Geochem. 46, 30–42 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Hosono, T. et al. Multiple isotope (H, O, N, S and Sr) approach elucidates complex pollution causes in the shallow groundwaters of the Taipei urban area. J. Hydrol. 397, 23–36 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Hosseini Poor, H., Ghaioomeyan, J., Ghasemi, A. R. & Choopani, S. Investigating salt sources in Sarchahan aquifer in Hormozghan province using ion ratios. Watershed Eng. Manag. 1, 212–226 (2010).

    Google Scholar 

  • Hosseini, M. & Saremi, A. Assessment and estimating groundwater vulnerability to pollution using a modified DRASTIC and GODS models (case study: Malayer Plain of Iran). Civ. Eng. J. 4, 433–442 (2018).

    Google Scholar 

  • Hosseini, S. M., Parizi, E., Ataie-Ashtiani, B. & Simmons, C. T. Assessment of sustainable groundwater resources management using integrated environmental index: case studies across Iran. Sci. Total Environ. 676, 792–810 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hosseni, M. S., Jahanshahi, R., Asadi, N. & Nasiri, M. A. Qualitative study of groundwater resources in the Hassanabad-Dehchah, Northeast of Neyriz, Fars province. Hydrogeology 5, 150–165 (2020).

    Google Scholar 

  • Hsieh, P. A. et al. Ground-water flow model for the Spokane valley-Rathdrum prairie aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho. U.S. Geological Survey Scientific Investigations Report 2007-5044. https://pubs.usgs.gov/sir/2007/5044/pdf/sir20075044.pdf (2007).

  • Hsu, K. C., Wang, C. H., Chen, K. C., Chen, C. T. & Ma, K. W. Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrol. J. 15, 903–913 (2007).

    ADS 

    Google Scholar 

  • Hsu, S. K. Plan for a groundwater monitoring network in Taiwan. Hydrol. J. 6, 405–415 (1998).

    ADS 

    Google Scholar 

  • Huang, Y. et al. Sources of groundwater pumpage in a layered aquifer system in the Upper Gulf Coastal Plain, USA. Hydrol. J. 20, 783–796 (2012).

    ADS 

    Google Scholar 

  • Huber, E., Hendricks‐Franssen, H. J., Kaiser, H. P. & Stauffer, F. The role of prior model calibration on predictions with ensemble Kalman filter. Groundwater 49, 845–858 (2011).

    CAS 

    Google Scholar 

  • Hudak, P. F. Chloride and nitrate distributions in the Hickory aquifer, Central Texas, USA. Environ. Int. 25, 393–401 (1999).

    CAS 

    Google Scholar 

  • Huff, G. F. Simulation of ground-water flow in the basin-fill aquifer of the Tularosa Basin, south-central New Mexico, predevelopment through 2040. U.S. Geological Survey Scientific Investigations Report 2004-5197. https://pubs.usgs.gov/sir/2004/5197/pdf/sir20045197.pdf (2005).

  • Hughes, J. L. Evaluation of ground-water quality in the Santa Maria Valley, California. U.S. Geological Survey, Water-Resources Investigations 76-128. https://pubs.usgs.gov/wri/1976/0128/report.pdf (1977).

  • Hui, Q. & Li, P. Hydrochemical characteristics of groundwater in Yinchuan plain and their control factors. Asian J. Chem. 23, 2927 (2011).

    Google Scholar 

  • Hunter, H. M. Nutrients and herbicides in groundwater flows to the Great Barrier Reef lagoon. Processes, fluxes and links to on-farm management. Report by individuals associated with the Australian Rivers Institute and Griffith University. https://www.qld.gov.au/__data/assets/pdf_file/0027/69066/rp51c-grounderwater-synthesis-great-barrier-reef.pdf (2012).

  • Huntington, J. L., Minor, B., Bromley, M. & Morton, C. Reconnaissance investigation of phreatophyte vegetation vigor for selected hydrographic areas in Nevada. Division of Hydrologic Sciences, Desert Research Institute. http://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/nevada/water/Documents/Final%20DRI-TNC%20spatiotemporal%20phreatophyte%20report_may31.pdf (2018).

  • Hurlow, H. A. Hydrogeologic studies and groundwater monitoring in Snake Valley and adjacent hydrographic areas, west-central Utah and east-central Nevada. Utah Geol. Surv. Bull. 135, 272 (2014).

    Google Scholar 

  • Hussain, S. D. et al. Surface water/groundwater relationship in Chaj Doab. Pakistan Institute of Nuclear Science & Technology Report No. PINSTECH/RIAD-122. https://inis.iaea.org/collection/NCLCollectionStore/_Public/22/031/22031202.pdf?r=1 (1990).

  • Hussain, Y. et al. Modelling the vulnerability of groundwater to contamination in an unconfined alluvial aquifer in Pakistan. Environ. Earth Sci. 76, 84 (2017).

    ADS 

    Google Scholar 

  • Hutchinson, R. D. & Klausing, R. L. Ground-water resources of Ramsey County, North Dakota. North Dakota State Water Commission Report. https://www.swc.nd.gov/info_edu/reports_and_publications/county_groundwater_studies/pdfs/Ramsey_Part_III.pdf (1980).

  • Iepure, S., Martinez-Hernandez, V., Herrera, S., Rasines-Ladero, R. & de Bustamante, I. Response of microcrustacean communities from the surface—groundwater interface to water contamination in urban river system of the Jarama basin (central Spain). Environ. Sci. Pollut. Res. 20, 5813–5826 (2013).

    CAS 

    Google Scholar 

  • Imes, J. L. & Emmett, L. F. Geohydrology of the Ozark Plateaus aquifer system in parts of Missouri, Arkansas, Oklahoma, and Kansas. U.S. Geological Survey Professional Paper 1414-D). https://pubs.usgs.gov/pp/1414d/report.pdf (1994).

  • Instituto Mexicano de Tecnología del Agua (IMTA). Plan estatal hidrico 2040 de Chihuahua. Report (contract) number 060-207-E75-JCAS-PRODDER. https://www.nadb.org/uploads/files/1_plan_estatal_hdrico_de_chihuahua_2040_2018.pdf (2018).

  • International Boundary and Water Commission (IBWC). Hydrogeological activities in the Conejos-Medanos/Mesilla Basin Aquifer, Chihuahua Phase I. International Boundary and Water Commission report. https://www.ibwc.gov/wp-content/uploads/2023/07/Final_report_English_Mesilla_ConejosMedanos_Study-2011.pdf (2011).

  • International Hydrological Programme, Division of Water Sciences. Atlas of transboundary aquifers. Global maps, regional cooperation and local inventories. UNESCO Report SC-2009/WS/22. https://unesdoc.unesco.org/ark:/48223/pf0000192145 (2009).

  • Izady, A. et al. Application of “panel-data” modeling to predict groundwater levels in the Neishaboor Plain, Iran. Hydrol. J. 20, 435–447 (2012).

    ADS 

    Google Scholar 

  • Jabbari, E., Fathi, M. & Moradi, M. Modeling groundwater quality and quantity to manage water resources in the Arak aquifer, Iran. Arab. J. Geosci. 13, 663 (2020).

    CAS 

    Google Scholar 

  • Jafari, F., Javadi, S., Golmohammadi, G., Karimi, N. & Mohammadi, K. Numerical simulation of groundwater flow and aquifer-system compaction using simulation and InSAR technique: Saveh basin, Iran. Environ. Earth Sci. 75, 833 (2016).

    ADS 

    Google Scholar 

  • Jafari, H., Shirafkan, M., Bagheri, R. & Karami, G. H. Assessing sustainability of the Bahabad aquifer, Central Iran. Appl. Ecol. Environ. Res. 16, 2585–2602 (2018).

    Google Scholar 

  • Jahanshahi, A., Moghaddamnia, A. & Khosravi, H. Assessment of desertification density using IMDPA model (case study: Shahr-Babak plain, Kerman Province). J. Range Watershed Manag. 68, 247–267 (2015).

    Google Scholar 

  • Jaimes-Palomera, L. R. et al. Geoquimica isotopica del sistema hidrogeologico del valle de Cuerna Vaca, estado de Morelos, Mexico. Geofís. Int. 28, 219–244 (1989).

    ADS 
    CAS 

    Google Scholar 

  • Jain, A. K. & Nayak, K. M. Aquifer map and management plan, Porbandar District, Gujarat State. Central Ground Water Board report. http://cgwb.gov.in/cgwbpnm/publication-detail/1035 (2016).

  • Jamshidzadeh, Z. & Mirbagheri, S. A. Evaluation of groundwater quantity and quality in the Kashan Basin, Central Iran. Desalination 270, 23–30 (2011).

    CAS 

    Google Scholar 

  • Janardhana, M. R. & Khairy, H. Simulation of seawater intrusion in coastal aquifers: a case study on the Amol–Ghaemshahr coastal aquifer system, Northern Iran. Environ. Earth Sci. 78, 695 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Jasrotia, A. S., Kumar, A. & Aasim, M. Morphometric analysis and hydrogeomorphology for delineating groundwater potential zones of Western Doon Valley, Uttarakhand, India. Int. J. Geomat. Geosci. 2, 1078–1096 (2011).

    Google Scholar 

  • Javadzadeh, H., Ataie-Ashtiani, B., Hosseini, S. M. & Simmons, C. T. Interaction of lake-groundwater levels using cross-correlation analysis: a case study of Lake Urmia Basin, Iran. Sci. Total Environ. 729, 138822 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Javanbakht, M., Asadi, V. & Dabiri, R. Evaluation of hydrogeochemical characteristics and evolutionary process of groundwater in Jajarm Plain, Northeastern Iran. Environ. Water Eng. 6, 206–218 (2020).

    Google Scholar 

  • Javanmard, Z. & Asghari Moghaddam, A. Using statistical and hydrochemical models for qualitative analysis of groundwater resources (case study: Mehraban plain, in East Azerbaijan). Water Soil Sci. 26, 31–50 (2016).

    Google Scholar 

  • Javi, S. T., Malekmohammadi, B. & Mokhtari, H. Application of geographically weighted regression model to analysis of spatiotemporal varying relationships between groundwater quantity and land use changes (case study: Khanmirza Plain, Iran). Environ. Monit. Assess. 186, 3123–3138 (2014).

    PubMed 

    Google Scholar 

  • Jawadi, H. A., Sagin, J. & Snow, D. D. A detailed assessment of groundwater quality in the Kabul Basin, Afghanistan, and suitability for future development. Water 12, 2890 (2020).

    CAS 

    Google Scholar 

  • Jebreen, H. et al. Recharge estimation in semi-arid karst catchments: Central West Bank, Palestine. Grundwasser 23, 91–101 (2018).

    ADS 

    Google Scholar 

  • Jeddi, T. A. et al. Water resources status to global changes in the Taznakht plain, Draa basin, Morocco. Front. Sci. Eng. 11, 43–58 (2023).

    Google Scholar 

  • Jennings, S. P. Hydrogeology and groundwater assessment of the water distribution area of the town of Hodges water department, Franklin and Marion Counties, Alabama. Geological Survey of Alabama report. https://www.ogb.state.al.us/img/Groundwater/OFR/OFR1311.pdf (2013).

  • Japan International Cooperation Agency (JICA) The study on the groundwater potential evaluation and management plan in the southeast Kalahari (Stampriet) Artesian Basin in the Republic of Namibia. https://openjicareport.jica.go.jp/pdf/11681699_01.PDF (2002).

  • Jiménez-Martínez, J., Aravena, R. & Candela, L. The role of leaky boreholes in the contamination of a regional confined aquifer. A case study: the Campo de Cartagena region, Spain. Water Air Soil Pollut. 215, 311–327 (2011).

    ADS 

    Google Scholar 

  • Jiráková, H., Huneau, F., Hrkal, Z., Celle-Jeanton, H. & Le Coustumer, P. Carbon isotopes to constrain the origin and circulation pattern of groundwater in the north-western part of the Bohemian Cretaceous Basin (Czech Republic). Appl. Geochem. 25, 1265–1279 (2010).

    ADS 

    Google Scholar 

  • Jiráková, H. et al. Geothermal assessment of the deep aquifers of the northwestern part of the Bohemian Cretaceous basin, Czech Republic. Geothermics 40, 112–124 (2011).

    ADS 

    Google Scholar 

  • Jocson, J. M. U., Jenson, J. W. & Contractor, D. N. Recharge and aquifer response: northern Guam lens aquifer, Guam, Mariana Islands. J. Hydrol. 260, 231–254 (2002).

    ADS 

    Google Scholar 

  • Johnson, G. C., Zimmerman, T. M., Lindsey, B. D. & Gross, E. L. Factors affecting groundwater quality in the Valley and Ridge aquifers, eastern United States, 1993–2002. U.S. Geological Survey Scientific Investigations Report 2011-5115. https://pubs.usgs.gov/sir/2011/5115/support/sir2011-5115.pdf (2011).

  • Johnson, M. J. Ground-water conditions in the Eureka Area, Humboldt County, California. U.S. Geological Survey Water-Resources Investigations 78-127. https://pubs.usgs.gov/wri/1978/0127/report.pdf (1975).

  • Jones, M. A. Geologic framework for the Puget Sound aquifer system, Washington and British Columbia. U.S. Geological Survey Professional Paper 1424-C. https://pubs.usgs.gov/pp/1424c/report.pdf (1999).

  • Jordan, J. L. Aquifer parameter estimation from aquifer tests and specific-capacity data in Cedar Valley and the Cedar Pass Area, Utah County, Utah. Utah Geological Survey Special Study 146. https://ugspub.nr.utah.gov/publications/special_studies/ss-146/ss-146.pdf (2013).

  • Jordan, J. L. et al. Characterization of the groundwater system in Ogden Valley, Weber County, Utah, with emphasis on groundwater–surface-water interaction and the groundwater budget. Utah Geological Survey Report Special Study 165. https://ugspub.nr.utah.gov/publications/special_studies/ss-165/ss-165.pdf (2019).

  • Joshi, S. K. et al. Strongly heterogeneous patterns of groundwater depletion in northwestern India. J. Hydrol. 598, 126492 (2021).

    Google Scholar 

  • Juran, L. et al. Development and application of a multi-scalar, participant-driven water poverty index in post-tsunami India. Int. J. Water Resour. Dev. 33, 955–975 (2017).

    Google Scholar 

  • Kadlecová, R. & Olmer, M. Review of groundwater resources. Geol. Výzk. Mor. Slez. 18, 31–34 (2011).

    Google Scholar 

  • Kahle, S. C. et al. Hydrogeologic framework and hydrologic budget components of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho. U.S. Geological Survey Scientific Investigations Report 2011-5124. https://pubs.usgs.gov/sir/2011/5124/pdf/sir20115124.pdf (2011).

  • Kahle, S. C., Olsen, T. D. & Fasser, E. T. Hydrogeology of the Little Spokane River Basin, Spokane, Stevens, and Pend Oreille Counties, Washington. U.S. Geological Survey Scientific Investigations Report 2013-5124. https://pubs.usgs.gov/sir/2013/5124/pdf/sir20135124.pdf (2013).

  • Kalantari, N., Pawar, N. J. & Keshavarzi, M. R. Water resource management in the intermountain Izeh Plain, Southwest of Iran. J. Mt. Sci. 6, 25–41 (2009).

    Google Scholar 

  • Kalantari, N., Rangzan, K., Thigale, S. S. & Rahimi, M. H. Site selection and cost-benefit analysis for artificial recharge in the Baghmalek plain, Khuzestan Province, southwest Iran. Hydrol. J. 18, 761–773 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Kale, V. S., Bodas, M., Chatterjee, P. & Pande, K. Emplacement history and evolution of the Deccan Volcanic Province, India. Episodes J. Int. Geosci. 43, 278–299 (2020).

    Google Scholar 

  • Kannan, N., Joseph, S. & Sheela, A. M. Characterization of groundwater in the shallow and deep aquifers of an agriculture-dominated tropical subhumid to semiarid region, India: a multivariate and GIS approach. J. Indian Soc. Remote Sens. 49, 1853–1868 (2021).

    Google Scholar 

  • Kansas Geological Survey. High Plains aquifer regions in Kansas. Kansas High Plains Aquifer Atlas. https://geokansas.ku.edu/kansas-high-plains-aquifer-atlas (2021).

  • Kao, Y. H., Liu, C. W., Wang, P. L. & Liao, C. M. Effect of sulfidogenesis cycling on the biogeochemical process in arsenic-enriched aquifers in the Lanyang Plain of Taiwan: evidence from a sulfur isotope study. J. Hydrol. 528, 523–536 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Kapple, G. W., Mitten, H. T., Durbin, T. J. & Johnson, M. J. Analysis of the Carmel Valley alluvial ground-water basin, Monterey County, California. U.S. Geological Survey Water-Resources Investigations Report 83-4280. https://pubs.usgs.gov/wri/1983/4280/report.pdf (1984).

  • Kar, G. et al. Integrated technologies to enhance productivity of seasonal deep waterlogged areas. Water Technology Centre for Eastern Region Research Bulletin 40. http://www.iiwm.res.in/pdf/Bulletin_40.pdf (2007).

  • Kardan Moghaddam, H., Dehghani, M., Rahimzadeh Kivi, Z., Kardan Moghaddam, H. & Hashemi, S. R. Efficiency assessment of AHP and fuzzy logic methods in suitability mapping for artificial recharging (case study: Sarbisheh basin, Southern Khorasan, Iran). Water Harvest. Res. 2, 57–67 (2017).

    Google Scholar 

  • Kay, R. T. & Kraske, K. A. Ground-water levels in aquifers used for residential supply, Campton Township, Kane County, Illinois. U.S. Geological Survey Water-Resources Investigations Report 96-4009. https://pubs.usgs.gov/wri/1996/4009/report.pdf (1996).

  • Kazmierczak, J. et al. Groundwater arsenic content related to the sedimentology and stratigraphy of the Red River delta, Vietnam. Sci. Total Environ. 814, 152641 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelbe, B. E. & Germishuyse, T. Geohydrological studies of the primary coastal aquifer in Zululand. Water Research Commission Report No. K5/720/1/01. https://www.wrc.org.za/wp-content/uploads/mdocs/720-1-01.pdf (2001).

  • Keller, C. K., Kamp, G. V. D. & Cherry, J. A. Fracture permeability and groundwater flow in clayey till near Saskatoon, Saskatchewan. Can. Geotech. J. 23, 229–240 (1986).

    Google Scholar 

  • Kelley, V. A., Deeds, N. E., Fryar, D. G. & Nicot, J. P. Groundwater availability models for the Queen City and Sparta aquifers. Contract report to the Texas Water Development Board. https://www.twdb.texas.gov/groundwater/models/gam/qcsp/QCSP_Model_Report.pdf?d=29484 (2004).

  • Kendy, E. Ground-water resources of the Gallatin Local Water Quality District, southwestern Montana. U.S. Geological Survey Fact Sheet 007-01. https://pubs.usgs.gov/fs/2001/0007/report.pdf (2001).

  • Kennedy, J. R., Kahler, L. M. & Read, A. L. Aquifer storage change and storage properties, 2010–2017, in the Big Chino Subbasin, Yavapai County, Arizona. U.S. Geological Survey Scientific Investigations Report 2019-5060. https://pubs.usgs.gov/sir/2019/5060/sir20195060.pdf (2019).

  • Kenny, S. Aquifers of the Capital Regional District. Capital Regional District report. https://www.env.gov.bc.ca/wsd/plan_protect_sustain/groundwater/aquifers/aquifers_crd/pdfs/aquif_crd.pdf, https://www.env.gov.bc.ca/wsd/plan_protect_sustain/groundwater/aquifers/aquifers_crd/pdfs/append_b.pdf (2004).

  • Kent, R. & Belitz, K. Ground-water quality data in the Upper Santa Ana Watershed Study Unit, November 2006–March 2007: results from the California GAMA Program. U.S. Geological Survey Data Series 404. https://pubs.usgs.gov/ds/404/ds404.pdf (2009).

  • Kernodle, J. M. Hydrogeology and steady-state simulation of ground-water flow in the San Juan Basin, New Mexico, Colorado, Arizona, and Utah. U.S. Geological Survey Water-Resources Investigations Report 95-4187. https://pubs.usgs.gov/wri/1995/4187/report.pdf (1996).

  • Khair, A. M., Li, C., Hu, Q., Gao, X. & Wanga, Y. Fluoride and arsenic hydrogeochemistry of groundwater at Yuncheng Basin, Northern China. Geochem. Int. 52, 868–881 (2014).

    CAS 

    Google Scholar 

  • Khairy, H. & Janardhana, M. R. Hydrogeochemical features of groundwater of semi-confined coastal aquifer in Amol–Ghaemshahr plain, Mazandaran Province, Northern Iran. Environ. Monit. Assess. 185, 9237–9264 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Khalili Naft Chali, A. & Shahidi, A. Comparison of lazy algorithms and M5 model to estimate groundwater level (case study: Plain Neyshabur). J. Water Soil. Sci. 21, 15–26 (2021).

    Google Scholar 

  • Khashei-Siuki, A. & Sharifan, H. Comparison of AHP and FAHP methods in determining suitable areas for drinking water harvesting in Birjand aquifer. Iran. Groundw. Sustain. Dev. 10, 100328 (2020).

    Google Scholar 

  • Khashei-Siuki, A. & Sarbazi, M. Evaluation of ANFIS, ANN, and geostatistical models to spatial distribution of groundwater quality (case study: Mashhad plain in Iran). Arab. J. Geosci. 8, 903–912 (2015).

    Google Scholar 

  • Khaska, M. et al. Origin of groundwater salinity (current seawater vs. saline deep water) in a coastal karst aquifer based on Sr and Cl isotopes. Case study of the La Clape massif (southern France). Appl. Geochem. 37, 212–227 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Khazai, E. & Riggi, M. G. Impact of urbanization on the Khash aquifer, an arid region of southeast Iran. International Association of Hydrological Sciences (IAHS) publication number 259, 211–218. https://iahs.info/uploads/dms/11462.211-217-259-Khazai.pdf (1999).

  • Kheirandish, M., Rahimi, H., Kamaliardakani, M. & Salim, R. Obtaining the effect of sewage network on groundwater quality using MT3DMS code: case study on Bojnourd plain. Groundw. Sustain. Dev. 11, 100439 (2020).

    Google Scholar 

  • Kheradpisheh, Z., Talebi, A., Rafati, L., Ghaneian, M. T. & Ehrampoush, M. H. Groundwater quality assessment using artificial neural network: a case study of Bahabad plain, Yazd, Iran. Desert 20, 65–71 (2015).

    Google Scholar 

  • Khodabakhshi, N., Heidarzadeh, N. & Asadollahfardi, G. Vulnerability assessment of an aquifer using modified GIS‐based methods. J. Am. Water Works Assoc. 109, E170–E182 (2017).

    Google Scholar 

  • Khosravi, K., Bordbar, M., Paryani, S., Saco, P. M. & Kazakis, N. New hybrid-based approach for improving the accuracy of coastal aquifer vulnerability assessment maps. Sci. Total Environ. 767, 145416 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Khosravi, K., Nejad Roshan, M. H. & Safari, A. Assessment of geostatistical methods for determining distribution patterns of groundwater resources in Sari-Neka coastal plain, northern Iran. Environ. Resour. Res. 5, 124–134 (2017).

    Google Scholar 

  • Kidd, R. E. & Lambeth, D. S. Hydrogeology and ground-water quality in the Black Belt area of west-central Alabama, and estimated water use for aquaculture, 1990. U.S. Geological Survey Water-Resources Investigations Report 94-4074. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1015.2227&rep=rep1&type=pdf (1995).

  • Kiran, D. A. & Ramaraju, H. K. The study of sea water intrusion using chemical indicators in the Coastal Region of Mangaluru. 52nd Annual Convention of Indian Water Works Association (IWWA) (2020).

  • Knechtel, M. M. & Lohr, E. W. Geology and ground-water resources of the Valley of Gila River and San Simon Creek, Graham County, Arizona; with a section on the chemical character of the ground water. U.S. Geological Survey Water-Supply Paper 796-F. https://pubs.usgs.gov/wsp/0796f/report.pdf (1938).

  • Knight, J. E., Gungle, B. & Kennedy, J. R. Assessing potential groundwater-level declines from future withdrawals in the Hualapai Valley, northwestern Arizona. U.S. Geological Survey Scientific Investigations Report 2021-5077. https://pubs.usgs.gov/sir/2021/5077/sir20215077.pdf (2021).

  • Knochenmus, L. A. Regional evaluation of the hydrogeologic framework, hydraulic properties, and chemical characteristics of the intermediate aquifer system underlying southern west-central Florida. U.S. Geological Survey Scientific Investigations Report 2006-5013. https://pubs.usgs.gov/sir/2006/5013/pdf/2006-5013.pdf (2006).

  • Koch, U. & Heinicke, J. Hydrological influences on long-term gas flow trends at locations in the Vogtland/NW Bohemian seismic region (German-Czech border). Ann. Geophys. 60, 557–568 (2007).

    Google Scholar 

  • Koci, J. Deep drainage potential of surface irrigated sugarcane in the Arriga Flats of far north Queensland. Report on improving application efficiency of furrow irrigated sugar cane using SIRMOD and implications for rising saline groundwater in the Arriga Basin of Far North Queensland funded by National Program for Sustainable Irrigation. http://27.111.91.222/xmlui/bitstream/handle/1/4125/JCU1101%20Final%20Report.pdf?sequence=1&isAllowed=y (2011).

  • Kováč, M., Sliva, L., Sopkova, B., Hlavata, J. & Škulová, A. Serravallian sequence stratigraphy of the northern Vienna Basin: high frequency cycles in the Sarmatian sedimentary record. Geol. Carpath. 59, 545–561 (2008).

    Google Scholar 

  • Kralik, M. et al. Using 18O/2H, 3H/3He, 85Kr and CFCs to determine mean residence times and water origin in the Grazer and Leibnitzer Feld groundwater bodies (Austria). Appl. Geochem. 50, 150–163 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Krauze, P. et al. Microbiological and geochemical survey of CO2-dominated mofette and mineral waters of the Cheb Basin, Czech Republic. Front. Microbiol. 8, 2446 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kulkarni, H., Deolankar, S. B., Lalwani, A., Joseph, B. & Pawar, S. Hydrogeological framework of the Deccan basalt groundwater systems, west-central India. Hydrol. J. 8, 368–378 (2000).

    ADS 

    Google Scholar 

  • Kumar, A. & Singh, C. K. Arsenic enrichment in groundwater and associated health risk in Bari doab region of Indus basin, Punjab, India. Environ. Pollut. 256, 113324 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Kumar, M. D., Ghosh, S., Patel, A., Singh, O. P. & Ravindranath, R. Rainwater harvesting in India: some critical issues for basin planning and research. Land Use Water Resour. Res. 6, 1–17 (2006).

    Google Scholar 

  • Kumar, U. S., Sharma, S., Navada, S. V. & Deodhar, A. S. Environmental isotopes investigation on recharge processes and hydrodynamics of the coastal sedimentary aquifers of Tiruvadanai, Tamilnadu State, India. J. Hydrol. 364, 23–39 (2009).

    Google Scholar 

  • Kumar, V. S., Amarender, B., Dhakate, R., Sankaran, S. & Kumar, K. R. Assessment of groundwater quality for drinking and irrigation use in shallow hard rock aquifer of Pudunagaram, Palakkad District Kerala. Appl. Water Sci. 6, 149–167 (2016).

    ADS 

    Google Scholar 

  • Kuniansky, E. L., Bellino, J. C. & Dixon, J. Transmissivity of the Upper Floridan aquifer in Florida and parts of Georgia, South Carolina, and Alabama. U.S. Geological Survey Scientific Investigations Map 3204. https://pubs.usgs.gov/sim/3204/pdf/USGS_SIM-3204_Kuniansky_Web.pdf (2012).

  • Kunkle, F. & Upson, J. E. Geology and ground water in Napa and Sonoma Valleys, Napa and Sonoma Counties, California. U.S. Geological Survey Water-Supply Paper 1495. https://pubs.usgs.gov/wsp/1495/report.pdf (1960).

  • La Gal La Salle, C., Marlin, C., Savoye, S. & Fontes, J. C. Geochemistry and 14C dating of groundwaters from Jurassic aquifers of North Aquitaine Basin (France). Appl. Geochem. 11, 433–445 (1996).

    ADS 

    Google Scholar 

  • La Rocque, G. A., Upson, J. E. & Worts Jr, G. F. Wells and water levels in principal ground-water basins in Santa Barbara County, California. U.S. Geological Survey Water-Supply Paper 1068. https://pubs.usgs.gov/wsp/1068/report.pdf (1950).

  • Labus, K., Bujok, P., Klempa, M., Porzer, M. & Matýsek, D. Preliminary geochemical modeling of water–rock–gas interactions controlling CO2 storage in the Badenian Aquifer within Czech Part of Vienna Basin. Environ. Earth Sci. 75, 1086 (2016).

    ADS 

    Google Scholar 

  • LaFave, J. I. Potentiometric surface map of the southern part of the Flathead Lake area, Lake, Missoula, Sanders Counties, Montana. Montana Ground-Water Assessment Atlas No. 2, Part B, Map 4. Montana Bureau of Mines and Geology, A Department of Montana Tech of The University of Montana (2004).

  • LaFave, J. I., Smith, L. N. & Patton, T. W. Ground-water resources of the Flathead Lake area: Flathead, Lake, Missoula, and Sanders Counties, Montana. Part A – descriptive overview and water-quality data. Montana Bureau of Mines and Geology. Montana Ground-Water Assessment Atlas 2. http://mbmg.mtech.edu/pdf/GWA_2.pdf (2004).

  • LaFave, J. Quality and age of water in the Madison Aquifer, Cascade County, Montana. Montana American Water Resources Association Conference, Session 2. https://www.montanaawra.org/wp/ppts/2011/session2/5_LaFave_John_i.pdf (2011).

  • Lalehzari, R. & Tabatabaei, S. H. Simulating the impact of subsurface dam construction on the change of nitrate distribution. Environ. Earth Sci. 74, 3241–3249 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Lambán, L. J. & Aragón, R. in Groundwater and Saline Intrusion. Selected Papers from the 18th Salt Water Intrusion Meeting (ed. Araguás, L.) 551–563 (2004).

  • Lambert, P. M., Marston, T., Kimball, B. A. & Stolp, B. J. Assessment of groundwater/surface-water interaction and simulation of potential streamflow depletion induced by groundwater withdrawal, Uinta River near Roosevelt, Utah. U.S. Geological Survey Scientific Investigations Report 2011-5044. https://pubs.usgs.gov/sir/2011/5044/pdf/sir20115044.pdf (2011).

  • LaMoreaux, P. E. et al. Reconnaissance of the geology and ground water of the Khorat Plateau, Thailand. U.S. Geological Survey Water-Supply Paper 1429. https://pubs.usgs.gov/wsp/1429/report.pdf (1958).

  • Lancaster, P. J., Dey, S., Storey, C. D., Mitra, A. & Bhunia, R. K. Contrasting crustal evolution processes in the Dharwar craton: insights from detrital zircon U–Pb and Hf isotopes. Gondwana Res. 28, 1361–1372 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Land and Water Commissioner. Groundwater: Gunnedah Basin NSW, what water information can tell us. Presentation. https://www.industry.nsw.gov.au/__data/assets/pdf_file/0020/104852/gunnedah-groundwater-presentation.pdf (2019).

  • Land, L. Overview of fresh and brackish water quality in New Mexico. Open-file report 583. https://geoinfo.nmt.edu/resources/water/amp/brochures/BWA/Estancia_Basin_FBWQNM.pdf (2016).

  • Land, L. Overview of fresh and brackish water quality in New Mexico. Project Summary Report, New Mexico Bureau of Geology and Mineral Resources, Open-file Report 583. https://geoinfo.nmt.edu/resources/water/amp/brochures/BWA/Raton_Las_Vegas_Basin_FBWQNM.pdf (2016).

  • Land, L. & Newton, B. T. Seasonal and long-term variations in hydraulic head in a karstic aquifer: Roswell artesian basin, New Mexico. New Mexico Bureau of Geology and Mineral Resources Open-File Report 503. https://geoinfo.nmt.edu/publications/openfile/downloads/500-599/503/ofr_503.pdf (2007).

  • Land, M. et al. Ground-water quality of coastal aquifer systems in the West Coast Basin, Los Angeles County, California, 1999–2002. U.S. Geological Survey Scientific Investigations Report 2004-5067. https://pubs.usgs.gov/sir/2004/5067/sir2004-5067.pdf (2004).

  • Laney, R. L. & Hahn, M. E. Hydrogeology of the eastern part of the Salt River Valley area, Maricopa and Pinal Counties, Arizona. U.S. Geological Survey Water-Resources Investigations Report 86-4147. https://pubs.er.usgs.gov/publication/wri864147 (1986).

  • Langenheim, V. E., Duval, J. S., Wirt, L. & DeWitt, E. Preliminary report on geophysics of the Verde River headwaters region, Arizona. U.S. Geological Survey Open-File Report 00-403. https://pubs.usgs.gov/of/2000/0403/pdf/of00-403p.pdf (2000).

  • Langeroudi, S. R. & Turkamani, S. M. Water quality assessment and hydrochemical characteristics of groundwater in Abhar Plain, Zanjan, Iran. J. Tethys 4, 209–220 (2016).

    CAS 

    Google Scholar 

  • Langrudi, M. A. O., Siuki, A. K., Javadi, S. & Hashemi, S. R. Evaluation of vulnerability of aquifers by improved fuzzy drastic method: case study: Aastane Kochesfahan plain in Iran. Ain Shams Eng. J. 7, 11–20 (2016).

    Google Scholar 

  • Larque, P. La sédimentation et les paléoaltérations tertiaires de la plaine du Forez: nouvelles données. Essai de corrélations stratigraphiques. Sci. Géol. Bull. Mém. 34, 21–35 (1981).

    Google Scholar 

  • LaVanchy, G. T., Adamson, J. K. & Kerwin, M. W. in Global Groundwater: Source, Scarcity, Sustainability, Security, and Solutions (eds Mukherjee, A. et al.) 439–449 (Elsevier, 2021).

  • Ledesma-Ruiz, R., Pastén-Zapata, E., Parra, R., Harter, T. & Mahlknecht, J. Investigation of the geochemical evolution of groundwater under agricultural land: a case study in northeastern Mexico. J. Hydrol. 521, 410–423 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Lee, S. Investigating the Origin and Dynamics of Salinity in a Confined Aquifer System in Southeast Australia (Western Port Basin). BSc Thesis, RMIT Univ. (2015).

  • Lee, S., Currell, M. & Cendón, D. I. Marine water from mid-Holocene sea level highstand trapped in a coastal aquifer: evidence from groundwater isotopes, and environmental significance. Sci. Total Environ. 544, 995–1007 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, W. T. Water resources of Beaver Valley, Utah. U.S. Geological Survey Water-Supply Paper 217. https://pubs.usgs.gov/wsp/0217/report.pdf (1908).

  • Leighton, M. M., Ekblaw, G. E. & Horberg, L. Physiographic divisions of Illinois. J. Geol. 56, 16–33 (1948).

    ADS 

    Google Scholar 

  • Leonard, G. J., Watts, K. R. Leonard, G. J. & Watts, K. R. Hydrogeology and simulated effects of ground-water development on an unconfined aquifer in the Closed Basin Division, San Luis Valley, Colorado. U.S. Geological Survey Water-Resources Investigations Report 87-4284. https://pubs.usgs.gov/wri/1987/4284/report.pdf (1989).

  • Leonard, R. B., Signor, D. C., Jorgensen, D. G. & Helgesen, J. O. Geohydrology and hydrochemistry of the Dakota Aquifer, central United States. J. Am. Water Resour. Assoc. 19, 903–912 (1983).

    ADS 
    CAS 

    Google Scholar 

  • Leonhard, L. Burton, K. & Milligan, N. in Groundwater in the Coastal Zones of Asia-Pacific (ed. Wetzelhuetter, C.) 359–378 (Springer, 2013).

  • Leopold, R. Groundwater resource evaluation of the lower Dakota Aquifer in northwest Iowa. Iowa Geological and Water Survey Water Resources Investigation Report No. 1B. https://publications.iowa.gov/26582/1/WRI-1b.pdf (2008).

  • Levi, E., Goldman, M., Tibor, G. & Herut, B. Delineation of subsea freshwater extension by marine geoelectromagnetic soundings (SE Mediterranean Sea). Water Resour. Manag. 32, 3765–3779 (2018).

    Google Scholar 

  • Lewis, C., Ray, D. & Chiu, K. K. Primary geologic sources of arsenic in the Chianan Plain (Blackfoot disease area) and the Lanyang Plain of Taiwan. Int. Geol. Rev. 49, 947–961 (2007).

    Google Scholar 

  • Li, C., Gao, X. & Wang, Y. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Sci. Total Environ. 508, 155–165 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, H., Zhan, R., Lu, Y., Zhou, B. & Wu, J. Spatiotemporal variation and periodic evolution characteristics of groundwater in the Xining area of China, eastern Qinghai–Tibet Plateau. Environ. Earth Sci. 80, 799 (2021).

    ADS 

    Google Scholar 

  • Li, J., Wang, Y., Xie, X. & Su, C. Hierarchical cluster analysis of arsenic and fluoride enrichments in groundwater from the Datong basin, Northern China. J. Geochem. Explor. 118, 77–89 (2012).

    CAS 

    Google Scholar 

  • Li, X. D., Liu, C. Q., Harue, M., Li, S. L. & Liu, X. L. The use of environmental isotopic (C, Sr, S) and hydrochemical tracers to characterize anthropogenic effects on karst groundwater quality: a case study of the Shuicheng Basin, SW China. Appl. Geochem. 25, 1924–1936 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Li, Y., Wang, D., Liu, Y., Zheng, Q. & Sun, G. A predictive risk model of groundwater arsenic contamination in China applied to the Huai River Basin, with a focus on the region’s cluster of elevated cancer mortalities. Appl. Geochem. 77, 178–183 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Liang, C. P., Jang, C. S., Liang, C. W. & Chen, J. S. Groundwater vulnerability assessment of the Pingtung Plain in Southern Taiwan. Int. J. Environ. Res. Public Health 13, 1167 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, C. P., Sun, C. C., Suk, H., Wang, S. W. & Chen, J. S. A machine learning approach for spatial mapping of the health risk associated with arsenic-contaminated groundwater in Taiwan’s Lanyang Plain. Int. J. Environ. Res. Public Health 18, 11385 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang, K. et al. Investigation of the Yellow River buried fault in the Wuhai basin, northwestern Ordos Block, China, using deep/shallow seismic reflection and drilling techniques. J. Asian Earth Sci. 163, 54–69 (2018).

    ADS 

    Google Scholar 

  • Lindholm, G. F. Summary of the Snake River Plain regional aquifer-system analysis in Idaho and eastern Oregon. U.S. Geological Survey Professional Paper 1408-A. https://pubs.usgs.gov/pp/1408a/report.pdf (1996).

  • Lithuanian Geological Survey and Latvian Environment, Geology and Meteorology Centre. Cross-border groundwater body characterization and status assessment. B-Solutions initiative report (2019).

  • Liu J. & Zheng C. in Integrated Groundwater Management (eds Jakeman A. J., Barreteau O., Hunt R. J., Rinaudo J. D. & Ross A.) 455–475 (Springer, 2016).

  • Liu, C. H., Pan, Y. W., Liao, J. J., Huang, C. T. & Ouyang, S. Characterization of land subsidence in the Choshui River alluvial fan, Taiwan. Environ. Geol. 45, 1154–1166 (2004).

    Google Scholar 

  • Liu, C. W. & Chen, J. F. The simulation of geochemical reactions in the Heng-Chun limestone formation, Taiwan. Appl. Math. Model. 20, 549–558 (1996).

    Google Scholar 

  • Liu, C. W., Chou, Y. L., Lin, S. T., Lin, G. J. & Jang, C. S. Management of high groundwater level aquifer in the Taipei Basin. Water Resour. Manag. 24, 3513–3525 (2010).

    Google Scholar 

  • Liu, J. et al. Study on the dynamic characteristics of groundwater in the valley plain of Lhasa City. Environ. Earth Sci. 77, 646 (2018).

    ADS 

    Google Scholar 

  • Liu, S., Tang, Z., Gao, M. & Hou, G. Evolutionary process of saline-water intrusion in Holocene and Late Pleistocene groundwater in southern Laizhou Bay. Sci. Total Environ. 607, 586–599 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • Llamas, M. R., Simpson, E. S. & Alfaro, P. E. M. Ground‐water age distribution in Madrid Basin, Spain. Groundwater 20, 688–695 (1982).

    CAS 

    Google Scholar 

  • Llopis-González, A., Sánchez, A. L., Requena, P. M. & Suárez-Varela, M. M. Assessment of the microbiological quality of groundwater in three regions of the Valencian Community (Spain). Int. J. Environ. Res. Public Health 11, 5527–5540 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lloyd, J. W. & Jacobson, G. The hydrogeology of the Amadeus Basin, central Australia. J. Hydrol. 93, 1–24 (1987).

    ADS 

    Google Scholar 

  • Loeltz, O. J. & Eakin, T. E. Geology and water resources of Smith Valley, Lyon and Douglas Counties, Nevada. U.S. Geological Survey Water-Supply Paper 1228. https://pubs.usgs.gov/wsp/1228/report.pdf (1953).

  • Londquist, C. J. & Livingston, R. K. Water-resources appraisal of the Wet Mountain Valley, in parts of Custer and Fremont Counties, Colorado. U.S. Geological Survey Water-Resources Investigations 78-1. from https://pubs.usgs.gov/wri/1978/0001/report.pdf (1978).

  • Long, A. J., Thamke, J. N., Davis, K. W. & Bartos, T. T. Groundwater availability of the Williston Basin, United States and Canada. U.S. Geological Survey Professional Paper 1841. from https://pubs.usgs.gov/pp/1841/pp1841.pdf (2018).

  • Lopes, T. J. Hydrologic evaluation of the Jungo area, southern Desert Valley, Nevada. U.S. Geological Survey Open-File Report 2010-1009. https://pubs.usgs.gov/of/2010/1009/pdf/ofr20101009.pdf (2010).

  • Lopes, T. J. & Evetts. D. M. Ground-water pumpage and artificial recharge estimates for calendar year 2000 and average annual natural recharge and interbasin flow by hydrographic area, Nevada. U.S. Geological Survey Water-Resources Investigations Report 2004-5239. https://pubs.usgs.gov/sir/2004/5239/sir2004-5239.pdf (2005).

  • López-Geta, J. A., Del Barrio Beato, V. & Vega Martin, L. Explotación de las Aguas Subterráneas En El Duero: Los Retos De La Cuenca. Conference paper. https://www.researchgate.net/profile/Leticia-Vega-Martin/publication/276938341_EXPLOTACION_DE_LAS_AGUAS_SUBTERRANEAS_EN_EL_DUERO_LOS_RETOS_DE_LA_CUENCA/links/555c6b3a08ae6aea08175a6e/EXPLOTACION-DE-LAS-AGUAS-SUBTERRANEAS-EN-EL-DUERO-LOS-RETOS-DE-LA-CUENCA.pdf (2006).

  • Loris, P. Hydrogeology of the Waipara Alluvial Basin. MSc thesis, Univ. Canterbury (2000).

  • Louisiana Department of Environmental Quality. Carrizo-Wilcox aquifer summary report 2007. Aquifer Sampling and Assessment Program (ASSET) Program. https://deq.louisiana.gov/assets/docs/Water/Triennial_reports/AquiferSummaries_2007-2009/02Carrizo-WilcoxAquiferSummary09.pdf (2007).

  • Louisiana Department of Transportation and Development. Water Resources of Lafayette Parish. U.S. Geological Survey Fact Sheet 2010-3048. https://pubs.usgs.gov/fs/2010/3048/pdf/FS2010-3048.pdf (2011).

  • Louisiana Department of Transportation and Development. Water Resources of Orleans Parish, Louisiana. U.S. Geological Survey Fact Sheet 2014-3017. https://pubs.usgs.gov/fs/2014/3017/pdf/fs2014-3017.pdf (2014).

  • Louisiana Department of Transportation and Development. Water Resources of St. John the Baptist Parish, Louisiana. U.S. Geological Survey Fact Sheet 2014-3102. https://pubs.usgs.gov/fs/2014/3102/pdf/fs2014-3102.pdf (2014).

  • Love, A. J. et al. Groundwater residence time and palaeohydrology in the Otway Basin, South Australia: 2H, 18O and 14C data. J. Hydrol. 153, 157–187 (1994).

    ADS 

    Google Scholar 

  • Lu, H. Y., Peng, T. R., Liu, T. K., Wang, C. H. & Huang, C. C. Study of stable isotopes for highly deformed aquifers in the Hsinchu-Miaoli area, Taiwan. Environ. Geol. 50, 885–898 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Lu, K. L., Liu, C. W. & Jang, C. S. Using multivariate statistical methods to assess the groundwater quality in an arsenic-contaminated area of Southwestern Taiwan. Environ. Monit. Assess. 184, 6071–6085 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Lü, X., Han, Z., Li, H., Zheng, Y. & Liu, J. Influence of urbanization on groundwater chemistry at Lanzhou Valley basin in China. Minerals 12, 385 (2022).

    ADS 

    Google Scholar 

  • Luckey, R. L. & Becker, M. F. Hydrogeology, water use, and simulation of flow in the High Plains aquifer in northwestern Oklahoma, southeastern Colorado, southwestern Kansas, northeastern New Mexico, and northwestern Texas. U.S. Geological Survey Water-Resources Investigations Report 99-4104. https://pubs.usgs.gov/wri/wri994104/pdf/wri994104.pdf (2003).

  • Lund, J. R. Regional water supply development in south Sweden. J. Urban Plan. Dev. 114, 14–33 (1988).

    Google Scholar 

  • Luo, C. Y., Shen, S. L., Han, J., Ye, G. L. & Horpibulsuk, S. Hydrogeochemical environment of aquifer groundwater in Shanghai and potential hazards to underground infrastructures. Nat. Hazards 78, 753–774 (2015).

    Google Scholar 

  • Lyke, W. L. & Coble, R. W. Regional study of the Castle Hayne Aquifer of eastern North Carolina. U.S. Geological Survey Open-File Report 87-571. https://pubs.usgs.gov/of/1987/0571/report.pdf (1987).

  • Maathuis, H. The quality of natural groundwaters in Saskatchewan. Saskatchewan Research Council Publication No. 12012-1E08. https://www.wsask.ca/PageFiles/2978/The%20Quality%20of%20Natural%20Groundwaters%20in%20Saskatchewan,%20January%202008,%20Maathuis,%20H.,%20SRC%20pub.%20No.%2012012-1E08.pdf (2008).

  • Maathuis, H. & Simpson, M. Groundwater resources of the prelate (72K) area, Saskatchewan. Saskatchewan Research Council Publication No. 11975-1E07. https://www.wsask.ca/wp-content/uploads/2021/08/Groundwater-Resources-Report-Prelate.pdf (2007).

  • Maathuis, H. & Simpson, M. Hydrogeology of the Ribstone Creek Aquiferin Western Canada. Saskatchewan Research Council Publication No. 11500-1E02. https://www.wsask.ca/PageFiles/2978/Hydrogeology%20of%20the%20Ribstone%20Creek%20Aquifer%20in%20Western%20Canada,%20Maathuis,%20H.,%20and%20Simpson,%20M.,%202002,%20SRC%20Pub%20No%2011500-1E02.pdf (2002).

  • MacDonald, A. M. & Allen, D. J. Aquifer properties of the Chalk of England. Q. J. Eng. Geol. Hydrogeol. 34, 371–384 (2001).

    CAS 

    Google Scholar 

  • Macfarlane, P. A., Doveton, J. H. & Whittemore, D. O. User’s guide to the Dakota Aquifer in Kansas. Kansas Geological Survey, Technical Series 2. http://www.kgs.ku.edu/Publications/Bulletins/TS2/index.html (1998).

  • Macfarlane, P. A. Revisions to the nomenclature for Kansas Aquifers. Kansas Geological Survey report. https://journals.ku.edu/cres/article/download/11815/11159 (2000).

  • Machiwal, D., Islam, A. & Kamble, T. Trends and probabilistic stability index for evaluating groundwater quality: the case of quaternary alluvial and quartzite aquifer system of India. J. Environ. Manag. 237, 457–475 (2019).

    CAS 

    Google Scholar 

  • Machkova, M., Velikov, B., Machkova, M., Dimitrov, D. & Neytchev, N. in Natural Groundwater Quality (eds Edmunds, W. M. & Shand, P.) 391–403 (Wiley, 2008).

  • Mack, T. J., Chornack, M. P. & Taher, M. R. Groundwater-level trends and implications for sustainable water use in the Kabul Basin, Afghanistan. Environ. Syst. Decis. 33, 457–467 (2013).

    Google Scholar 

  • Mack, T. J. Assessment of ground-water resources in the Seacoast region of New Hampshire. U.S. Geological Survey Scientific Investigations Report 2008-5222. https://pubs.usgs.gov/sir/2008/5222/pdf/sir2008-5222.pdf (2008).

  • Maclear, L. G. A. The hydrogeology of the Uitenhage Artesian Basin with reference to the Table Mountain Group Aquifer. Water SA 27, 499–506 (2001).

    ADS 

    Google Scholar 

  • Macphail, M. Hill, B., Carpenter, R. & McKellar, J. Cenozoic oil-shale deposits in southeastern-central Queensland: palynostratigraphic age determinations and correlations for the Biloela Formation (Biloela Basin) in GSQ Monto 5. Queensland Geological Record 2014/01. https://geoscience.data.qld.gov.au/report/cr089721 (2014).

  • Madani, K. & Mariño, M. A. System dynamics analysis for managing Iran’s Zayandeh-Rud river basin. Water Resour. Manag. 23, 2163–2187 (2009).

    Google Scholar 

  • Madison, J. P., LaFave, J. I., Patton, T. W., Smith, L. N. & Olson, J. N. Groundwater resources of the Middle Yellowstone River area: Treasure and Yellowstone counties, Montana Part A*—descriptive overview and water-quality data. Montana Bureau of Mines and Geology, Montana Ground-Water Assessment Atlas 3-A. http://mbmg.mtech.edu/pdf-publications/gwaa_3.pdf (2014).

  • Magarey, P. & Deane, D. Willochra Basin Groundwater Monitoring Status Report 2005. Department of Water, Land and Biodiversity Conservation Report No. 2005/39. https://www.waterconnect.sa.gov.au/Content/Publications/DEW/ki_dwlbc_2005_39.pdf (2005).

  • Magesh, N. S., Chandrasekar, N. & Soundranayagam, J. P. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci. Front. 3, 189–196 (2012).

    Google Scholar 

  • Mahlknecht, J. et al. Hydrochemical controls on arsenic contamination and its health risks in the Comarca Lagunera region (Mexico): implications of the scientific evidence for public health policy. Sci. Total Environ. 857, 159347 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mahlknecht, J., Merchán, D., Rosner, M., Meixner, A. & Ledesma-Ruiz, R. Assessing seawater intrusion in an arid coastal aquifer under high anthropogenic influence using major constituents, Sr and B isotopes in groundwater. Sci. Total Environ. 587, 282–295 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • Mahmoodlu, M., Heshmatpour, A., Jandaghi, N., Zare, A. & Mehrabi, H. Hydrogeochemical assessment of groundwater quality: Seyedan-Farooq aquifer, Fars Province. Iran. J. Ecohydrol. 5, 1241–1253 (2018).

    Google Scholar 

  • Mahmoudzadeh, E., Rezaian, S. & Ahmadi, A. Assessment of Meymeh Plain aquifer vulnerability in Esfahan using comparative method AVI, GODS, DRASTIC. J. Environ. Stud. 39, 45–60 (2013).

    Google Scholar 

  • Majola, K., Xu, Y. & Kanyerere, T. Review: Assessment of climate change impacts on groundwater-dependent ecosystems in transboundary aquifer settings with reference to the Tuli-Karoo transboundary aquifer. Ecohydrol. Hydrobiol. 22, 126–140 (2022).

    Google Scholar 

  • Malakootian, M. & Nozari, M. GIS-based DRASTIC and composite DRASTIC indices for assessing groundwater vulnerability in the Baghin aquifer, Kerman, Iran. Nat. Hazards Earth Syst. Sci. 20, 2351–2363 (2020).

    ADS 

    Google Scholar 

  • Malekmohammadi, B. & Jahanishakib, F. Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecol. Indic. 82, 293–303 (2017).

    Google Scholar 

  • Malenda, H. F. & Penn, C. A. Groundwater levels in the Denver Basin bedrock aquifers of Douglas County, Colorado, 2011–19. U.S. Geological Survey Scientific Investigations Report 2020–5076. https://pubs.usgs.gov/sir/2020/5076/sir20205076.pdf (2020).

  • Mali, N., Koroša, A. & Urbanc, J. Prevalence of pesticides in Krško-Brežice polje aquifer. Geologija 64, 267–288 (2023).

    Google Scholar 

  • Mallory, M. J. Hydrogeology of the Southeastern Coastal Plain aquifer system in parts of eastern Mississippi and western Alabama. U.S. Geological Survey Professional Paper 1410-G. https://pubs.usgs.gov/pp/1410g/report.pdf (1993).

  • Manjusree, T. M., Joseph, S. & Thomas, J. Hydrogeochemistry and groundwater quality in the coastal sandy clay aquifers of Alappuzha district, Kerala. J. Geol. Soc. India 74, 459–468 (2009).

    CAS 

    Google Scholar 

  • Manning, A. H. Ground-water temperature, noble gas, and carbon isotope data from the Española Basin, New Mexico. U.S. Geological Survey Scientific Investigations Report 2008–5200. https://pubs.usgs.gov/sir/2008/5200/pdf/SIR08-5200.pdf (2009).

  • Manning, A. H. & Solomon, D. K. An integrated environmental tracer approach to characterizing groundwater circulation in a mountain block. Water Resour. Res. 41, W12412 (2005).

    ADS 

    Google Scholar 

  • Manz, R. P. Groundwater flow modeling of the Ojai basin using the USGS 3 dimensional MODFLOW model. MSc thesis, California State Univ. (1988).

  • Marchildon, M. & Kassenaar, D. Analyzing low impact development strategies using continuous fully distributed coupled groundwater and surface water models. J. Water Manag. Model., R246-17. https://doi.org/10.14796/JWMM.R246-17 (2013).

  • Maroufpoor, S., Fakheri-Fard, A. & Shiri, J. Study of the spatial distribution of groundwater quality using soft computing and geostatistical models. ISH J. Hydraul. Eng. 25, 232–238 (2019).

    Google Scholar 

  • Marques, E. A. et al. Analysis of groundwater and river stage fluctuations and their relationship with water use and climate variation effects on Alto Grande watershed, Northeastern Brazil. J. S. Am. Earth Sci. 103, 102723 (2020).

    Google Scholar 

  • Marques, R. M. Bacia do Parnaíba: Estado Atual do Conhecimento e Possibilidades Para a Produção de Gás Natural. Thesis, Universidade Federal do Pará (2011).

  • Marshall, J. S. The geomorphology and physiographic provinces of Central America. Central Am. Geol. Resour. Hazards 1, 75–121 (2007).

    Google Scholar 

  • Marshall, S. K., Fontaine, K., Kilgour, P. L. & Lewis, S. J. Regional hydrogeological characterisation of the Maryborough Basin, Queensland. Technical report for the National Collaboration Framework Regional Hydrogeology Project. Geoscience Australia Record 2015/14. https://wetlandinfo.des.qld.gov.au/resources/static/pdf/ecology/catchment-stories/gss/marshall-2015.pdf (2015).

  • Marston, T. M. Water resources of Parowan Valley, Iron County, Utah. U.S. Geological Survey Scientific Investigations Report 2017-5033. https://doi.org/10.3133/sir20175033 (2017).

  • Martin, P. Development and calibration of a two-dimensional digital model for the analysis of the ground-water flow system in the San Antonio Creek Valley, Santa Barbara County, California. U.S. Geological Survey Water-Resources Investigations Report 84-4340. https://pubs.usgs.gov/wri/1984/4340/report.pdf (1984).

  • Martínez, R. et al. The EU GeoCapacity project—saline aquifers storage capacity in group south countries. Energy Procedia 1, 2733–2740 (2009).

    Google Scholar 

  • Martínez-Bastida, J. J., Araúzo, M. & Valladolid, M. Caracterización hidroquímica de las aguas superficiales y subterráneas en la cuenca del Oja-Tirón. Procesos de contaminación. Limnetica 26, 219–232 (2007).

    Google Scholar 

  • Martínez-Granados, D. & Calatrava, J. The role of desalinisation to address aquifer overdraft in SE Spain. J. Environ. Manag. 144, 247–257 (2014).

    Google Scholar 

  • Martínez-Retama, S., Flores, C. & Castillo-Gurrola, J. Saline intrusion in Guaymas Valley, Mexico from time-domain electromagnetic soundings. Geofís. Int. 46, 175–198 (2007).

    ADS 

    Google Scholar 

  • Martínez-Santos, P., Castaño-Castaño, S. & Hernández-Espriú, A. Revisiting groundwater overdraft based on the experience of the Mancha Occidental Aquifer, Spain. Hydrol. J. 26, 1083–1097 (2018).

    ADS 

    Google Scholar 

  • Marvin, R. F., Shafer, G. H. & Dale, O. C. Groundwater resources of Victoria and Calhoun Counties, Texas. https://www.twdb.texas.gov/publications/reports/bulletins/doc/Bull.htm/B6202.asp (1962).

  • Mashburn, S. L., Ryter, D. W., Neel, C. R., Smith, S. J. & Correll, J. S. Hydrogeology and simulation of ground-water flow in the Central Oklahoma (Garber-Wellington) Aquifer, Oklahoma, 1987 to 2009, and simulation of avail-able water in storage, 2010–2059. U.S. Geological Survey Scientific Investigations Report 2013-5219. https://pubs.usgs.gov/sir/2013/5219/pdf/sir20135219_v2.0.pdf (2014).

  • Masoumi, M., Gharaie, M. H. M. & Ahmadzadeh, H. Assessment of groundwater quality for the irrigation of melon farms: a comparison between two arable plains in northeastern Iran. Environ. Earth Sci. 78, 214 (2019).

    ADS 

    Google Scholar 

  • Masterson, J. P. et al. Assessment of groundwater availability in the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to North Carolina. U.S. Geological Survey Professional Paper 1829. https://pubs.usgs.gov/pp/1829/pp1829.pdf (2016).

  • Masterson, J. P. et al. Hydrogeology and hydrologic conditions of the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to North Carolina. U.S. Geological Survey Scientific Investigations Report 2013-5133. https://doi.org/10.3133/sir20135133 (2013).

  • Masterson, J. P. & Walter, D. A. Hydrogeology and groundwater resources of the coastal aquifers of southeastern Massachusetts. U.S. Geological Survey Circular 1338. https://pubs.usgs.gov/circ/circ1338/pdf/circular%202009-1338_508.pdf (2009).

  • Mathany, T. M., Wright, M. T., Beuttel, B. S. & Belitz, K. Groundwater-quality data in the Borrego Valley, Central Desert, and low-use basins of the Mojave and Sonoran Deserts study unit, 2008–2010: results from the California GAMA Program. U.S. Geological Survey Data Series 659. https://pubs.usgs.gov/ds/659/pdf/ds659.pdf (2012).

  • Mather, B. et al. Constraining the response of continental-scale groundwater flow to climate change. Sci. Rep. 12, 4539 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matlock, W. G., Davis, P. R. & Roth, R. L. Groundwater in Little Chino Valley, Arizona: Tucson, University of Arizona, College of Agriculture, Agricultural Experiment Station, Technical Bulletin 201. https://repository.arizona.edu/bitstream/handle/10150/602177/TB178.pdf?sequence=1 (1973).

  • Maurer, D. K. Geologic framework and hydrogeology of the middle Carson River Basin, Eagle, Dayton, and Churchill Valleys, West-Central Nevada. U.S. Geological Survey Scientific Investigations Report 2011-5055. https://pubs.usgs.gov/sir/2011/5055/pdf/sir20115055.pdf (2011).

  • Maurer, D. K. & Thodal, C. E. Quantity and chemical quality of recharge, and updated water budgets, for the basin-fill aquifer in Eagle Valley, western Nevada. U.S. Geological Survey Water-Resources Investigations Report 99-4289. https://pubs.usgs.gov/wri/1999/4289/report.pdf (2000).

  • Maxey, G. B. & Eakin, T. E. Ground water in White River Valley, White Pine, Nye, and Lincoln Counties, Nevada. U.S. Department of the Interior Water Resources Bulletin No. 8. https://www.nrc.gov/docs/ML0331/ML033140348.pdf (1949).

  • Mayer, A., Nguyen, B. T. & Banton, O. Using radon-222 to study coastal groundwater/surface-water interaction in the Crau coastal aquifer (southeastern France). Hydrol. J. 24, 1775–1789 (2016).

    ADS 

    Google Scholar 

  • Mayo, A. L., Henderson, R. M., Tingey, D. & Webber, W. Chemical evolution of shallow playa groundwater in response to post-pluvial isostatic rebound, Honey Lake Basin, California–Nevada, USA. Hydrol. J. 18, 725–747 (2010).

    ADS 
    CAS 

    Google Scholar 

  • McGuire, V. L., Johnson, M. R., Schieffer, J. S., Stanton, J. S., Sebree, S. K. & Varstraeten, I. M. Water in storage and approaches to groundwater management, High Plains Aquifer, 2000. U.S. Geological Survey Circular 1243. https://pubs.usgs.gov/circ/2003/circ1243/pdf/C1243.pdf (2003).

  • McLean, J. S. Saline ground-water resources of the Tularosa basin, New Mexico. U.S. Geological Survey OSW Report No. 561. https://pubs.usgs.gov/unnumbered/70139928/report.pdf (1970).

  • Meinzer, O. E. Artesian water for irrigation in Little Bitterroot Valley, Montana. Water Supply Paper 400. https://pubs.usgs.gov/wsp/0400b/report.pdf (1916).

  • Mejía-González, M. Á., González-Hita, L., Espinoza-Ayala, J. & González-Verdugo, J. A. Determinación de las aportaciones de agua dulce a las lagunas costeras Chacahua y Salina Grande, Oaxaca, México, por medio de isótopos ambientales. Tecnol. Cienc. Agua 3, 53–64 (2012).

    Google Scholar 

  • Mendez, G. O. & Christensen, A. H. Regional water table (1996) and water-level changes in the Mojave River, the Morongo, and the Fort Irwin ground-water basins, San Bernardino County, Calif., 38 pp. Accessed April 27, 2022 via https://pubs.usgs.gov/wri/1997/4160/report.pdf (1997).

  • Mendez-Estrella, R., Romo-Leon, J. R., Castellanos, A. E., Gandarilla-Aizpuro, F. J. & Hartfield, K. Analyzing landscape trends on agriculture, introduced exotic grasslands and riparian ecosystems in arid regions of Mexico. Remote Sens. 8, 664 (2016).

    ADS 

    Google Scholar 

  • Meng, A. & Harsh, J. F. Hydrogeologic framework of the Virginia coastal plain. U.S. Geological Survey Professional Paper 1404-C. https://pubs.usgs.gov/pp/pp1404-C/pdf/pp_1404-c.pdf (1988).

  • Meng, S. et al. Spatiotemporal evolution characteristics study on the precipitation infiltration recharge over the past 50 years in the North China Plain. J. Earth Sci. 26, 416–424 (2015).

    Google Scholar 

  • Meredith, K. T. et al. Evolution of dissolved inorganic carbon in groundwater recharged by cyclones and groundwater age estimations using the 14C statistical approach. Geochim. Cosmochim. Acta 220, 483–498 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Meredith, K., Cendón, D. I., Pigois, J. P., Hollins, S. & Jacobsen, G. Using 14C and 3H to delineate a recharge ‘window’ into the Perth Basin aquifers, North Gnangara groundwater system, Western Australia. Sci. Total Environ. 414, 456–469 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Miall, A. D. Geoscience of climate and energy 13. The environmental hydrogeology of the Oil Sands, Lower Athabasca Area, Alberta. Geosci. Can. 40, 215–233 (2013).

    Google Scholar 

  • Michael, H. A. & Voss, C. I. Controls on groundwater flow in the Bengal Basin of India and Bangladesh: regional modeling analysis. Hydrol. J. 17, 1561–1577 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Mihaylova, B. et al. in Transboundary Aquifers: Challenges and the Way Forward Topic 3 Paper 11, 110–107 (UNESCO, 2022).

  • Miller, J. A. Ground Water Atlas of the United States: Segment 10, Illinois, Indiana, Kentucky, Ohio, Tennessee. U.S. Geological Survey Hydrologic Investigations Atlas 730-K. https://pubs.usgs.gov/ha/730k/report.pdf (1995).

  • Miller, J. A. Ground Water Atlas of the United States: Segment 6, Alabama, Florida, Georgia, South Carolina. U.S. Geological Survey Hydrologic Investigations Atlas 730-G. https://pubs.usgs.gov/ha/730g/report.pdf (1990).

  • Miller, J. A. & Appel, C. L. Ground Water Atlas of the United States: Segment 3, Kansas, Missouri, Nebraska. U.S. Geological Survey Hydrologic Investigations Atlas 730-D. https://pubs.usgs.gov/ha/730d/report.pdf (1997).

  • Minderhoud, P. S. J. et al. Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environ. Res. Lett. 12, 064006 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ministere de l’Ecologie, du Developpement Durable et de l’Energie. Hydrologie souterraine synthèse. BRGM report. https://professionnels.ofb.fr/sites/default/files/pdf/RE_Explore2070_Eaux_Sout_Synthese.pdf (2012).

  • Ministerio de Medio Ambiente y Recursos Naturales. Informe de monitoreo de los Acuíferos de Zapotitán, Santa Ana y San Miguel. Ministerio de Medio Ambiente y Recursos Naturales report. http://rcc.marn.gob.sv/bitstream/handle/123456789/127/Acuiferos%20%20StaAna%2c%20SnMiguel%20y%20Zapotit%c3%a1n_2016.pdf?sequence=1&isAllowed=y (2016).

  • Ministerio de Medio Ambiente y Recursos Naturales. Mapa Hidrogeológico de El Salvador. https://www.sica.int/documentos/mapa-hidrogeologico-de-el-salvador_1_128021.html (2021).

  • Ministerio de Medio Ambiente y Recursos Naturales. Mapa Hidrogeológico de El Salvador. http://srt.snet.gob.sv/sihi/public/atlas (2023).

  • Ministerio de Medio Ambiente y Recursos Naturales. Objetivos de Calidad de Agua, Ríos, Lagos y Embalses ZP1. http://srt.snet.gob.sv/sihi/public/atlas (2023).

  • Ministerio de Medio Ambiente y Recursos Naturales Plan Nacional de Gestión Integrada del Recurso Hídrico de El Salvador, con énfasis en zonas prioritarias. Report by the Ministerio de Medio Ambiente y Recursos Naturales (MARN). http://rcc.marn.gob.sv/bitstream/handle/123456789/259/Resumen%20Ejecutivo%20PNGRH%202017.compressed.pdf?sequence=1&isAllowed=y (2017).

  • Minnesota Department of Natural Resources Minnesota Groundwater Provinces 2021. Minnesota Department of Natural Resources map, 2 pp. Accessed April 14, 2021 from https://files.dnr.state.mn.us/waters/groundwater_section/mapping/provinces/2021-provinces.pdf (2021).

  • Mirzaei, R. & Sakizadeh, M. Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran. Environ. Sci. Pollut. Res. 23, 2758–2769 (2016).

    Google Scholar 

  • Mirzavand, M., Ghasemieh, H., Sadatinejad, S. J. & Bagheri, R. Delineating the source and mechanism of groundwater salinization in crucial declining aquifer using multi-chemo-isotopes approaches. J. Hydrol. 586, 124877 (2020).

    CAS 

    Google Scholar 

  • Miyakoshi, A., Uchida, Y., Sakura, Y. & Hayashi, T. Distribution of subsurface temperature in the Kanto Plain, Japan; estimation of regional groundwater flow system and surface warming. Phys. Chem. Earth A/B/C 28, 467–475 (2003).

    ADS 

    Google Scholar 

  • Miyazaki, S., Hasegawa, S., Kayaki, T. & Osamu, W. in Hydro-environments of Alluvial Fans in Japan, Monograph, 36th IAH Congress (International Association for Hydro-Environment Engineering and Research, 2008).

  • Tabari, M. M. R. & Kabiri Samani, M. Groundwater quality assessment using entropy weighted osculating value and set pair analysis methods (case study, SARAYAN plain). J. Environ. Sci. Technol. 21, 99–112 (2019).

    Google Scholar 

  • Mohammadi, Z., Zare, M. & Sharifzade, B. Delineation of groundwater salinization in a coastal aquifer, Bousheher, South of Iran. Environ. Earth Sci. 67, 1473–1484 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Mohammadzadeh-Habili, J. et al. Influences of natural salinity sources and human actions on the Shapour River salinity during the recent streamflow reduction period. Environ. Monit. Assess. 193, 696 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Mohammadzadeh-Habili, J., Soltani, M. & Khalili, D. Effect of reservoir geometry on functionality of recharge dams influenced by sedimentation: case study of the Meymand recharge dam. Arab. J. Geosci. 14, 487 (2021).

    Google Scholar 

  • Mohammed, N. et al. Isotopic and geochemical identification of main groundwater supply sources to an alluvial aquifer, the Allier River valley (France). J. Hydrol. 508, 181–196 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Mohebbi Tafreshi, G. & Mohebbi Tafreshi, A. Statistical approaches and hydrochemical modeling of groundwater in the Golpayegan Plain aquifer, Iran. Model. Earth Syst. Environ. 6, 2391–2404 (2020).

    Google Scholar 

  • Mojarrad, M., Rakhshandehrou, G. R., Monadi, R. & Ghorbani, M. in Proc. 2nd International Conference of Water Resources and Wetlands (eds Gâştescu, P. & Marszelewski, W.) 336–343 (UNESCO, 2014).

  • Mojiri, H. & Halabian, A. Evaluation of the effects of temporal variables of temperature, precipitation and water harvesting on groundwater resources in Mehrgerd basin of Semirom. J. Watershed Manag. Res. 10, 238–249 (2019).

    Google Scholar 

  • Mokhtar, A. & Aram, S. Systemic insights into agricultural groundwater management: case of Firuzabad Plain, Iran. Water Policy 19, 867–885 (2017).

    Google Scholar 

  • Mokrik, R., Mazeika, J., Baublyt, A. & Martma, T. The groundwater age in the Middle-Upper Devonian aquifer system, Lithuania. Hydrol. J. 17, 871–889 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Mora, A., Mahlknecht, J., Rosales-Lagarde, L. & Hernández-Antonio, A. Assessment of major ions and trace elements in groundwater supplied to the Monterrey metropolitan area, Nuevo León, Mexico. Environ. Monit. Assess. 189, 394 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Morales, P., Casar, I., Cortes, A., Arizabalo, R. D. & Aravena, R. Environmental isotopes and geochemical investigation of groundwater in the north-western part of the State of Morelos, Mexico (IAEA-TECDOC-502). International Atomic Energy Agency (IAEA). https://inis.iaea.org/collection/NCLCollectionStore/_Public/21/031/21031083.pdf?r=1 (1989).

  • Morales-Casique, E. Mixing of groundwaters with uncertain end-members: case study in the Tepalcingo-Axochiapan aquifer, Mexico. Hydrol. J. 20, 605–613 (2012).

    ADS 

    Google Scholar 

  • Moratilla, F. E. & Pérez, C. M. O. Aplicación de la tomografía remota térmica a la investigación de la hidrogeología y dinámica de flujos de las aguas subterráneas de la cuenca del río Júcar. Crisis y medio ambiente:¿ Oportunidad o retroceso? https://www.mapa.gob.es/ministerio/pags/biblioteca/revistas/pdf_AM%5CAMBIENTA_101.pdf (2012).

  • Morell, I. Acuíferos detríticos costeros. Hidrogeol. Aguas Subterrán. 1, 31–44 (2003).

    Google Scholar 

  • Morikawa, N. et al. Relationship between geological structure and helium isotopes in deep groundwater from the Osaka Basin: application to deep groundwater hydrology. Geochem. J. 42, 61–74 (2008).

    ADS 
    CAS 

    Google Scholar 

  • Morín, P. M. Aplicación de un modelo numérico para simular el flujo hidráulico del acuífero de Ojos Negros. MSc thesis, Ensenada Center for Scientific Research and Higher Education (2013).

  • Morrison, R. B. Ground-water resources of the Big Sandy Valley, Mohave County, Arizona. U.S. Geological Survey Report. https://azmemory.azlibrary.gov/nodes/view/91763?keywords= (1940).

  • Moslemi, H. Assessment of groundwater crisis in arid and semiarid areas (case study: Jaghin and Tokahor Plain). Irrig. Sci. Eng. 42, 31–46 (2019).

    Google Scholar 

  • Motagh, M. et al. Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophys. Res. Lett. 35, L16403 (2008).

    ADS 

    Google Scholar 

  • Motevalli, A., Pourghasemi, H. R., Hashemi, H. & Gholami, V. in Spatial Modeling in GIS and R for Earth and Environmental Sciences (eds Pourghasemi, H. R. & Gokceoglu, C.) 547–571 (Elsevier, 2019).

  • Moura, A. & Velho, J. L. in Recursos Geologicos de Portugal Ch. 57, 523–536 (Palimage, 2012).

  • Mower, R. W. & Feltis, R. D. Ground-water hydrology of the Sevier Desert, Utah. U.S. Geological Survey Water-Supply Paper 1854. https://pubs.usgs.gov/wsp/1854/report.pdf (1968).

  • Mthembu, P. P., Elumalai, V., Brindha, K. & Li, P. Hydrogeochemical processes and trace metal contamination in groundwater: impact on human health in the Maputaland coastal aquifer, South Africa. Expos. Health 12, 403–426 (2020).

    CAS 

    Google Scholar 

  • Muir, K. S. Ground-water reconnaissance of the Santa Barbara-Montecito area, Santa Barbara County, California. U.S. Geological Survey Water-Supply Paper 1859-A. https://pubs.usgs.gov/wsp/1859a/report.pdf (1968).

  • Muir, M. A. K. & Martinez, A. A. Preliminary assessment of water resources including climate considerations for the Los Cabos and La Paz municipalities in the State of Baja California Sur, Mexico. International Water Association Water, Energy and Climate Conference. https://arctic.ucalgary.ca/sites/default/files/April18-IWA-FinalConferenceVersion-MAKMuir.pdf (2018).

  • Mukherjee, A., Fryar, A. E. & Howell, P. D. Regional hydrostratigraphy and groundwater flow modeling in the arsenic-affected areas of the western Bengal basin, West Bengal, India. Hydrol. J. 15, 1397–1418 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Mukherjee, A. et al. Revisiting the stratigraphy of the Mesoproterozoic Chhattisgarh Supergroup, Bastar craton, India based on subsurface lithoinformation. J. Earth Syst. Sci. 123, 617–632 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Mukherjee, A. et al. Groundwater systems of the Indian sub-continent. J. Hydrol. Reg. Stud. 4, 1–14 (2015).

    Google Scholar 

  • Municipio de El Llano. Atlas de Riesgos Naturales del Municipio de El Llano 2012. Report number 201010PP047745. http://rmgir.proyectomesoamerica.org/PDFMunicipales/2012/01010_El_Llano.pdf (2012).

  • Munro-Stasiuk, M. J. & Manahan, T. K. Investigating ancient Maya agricultural adaptation through ground penetrating radar (GPR) analysis of karst terrain, Northern Yucatán, Mexico. Acta Carsologica 39, 123–136 (2010).

    Google Scholar 

  • Murray-Darling Basin Commission. Murray-Darling Basin groundwater: a resource for the future. Murray-Darling Basin Commission. https://catalogue.nla.gov.au/catalog/3024769 (1999).

  • Musy, S. et al. In-situ sampling for krypton-85 groundwater dating. J. Hydrol. 11, 100075 (2021).

    CAS 

    Google Scholar 

  • Naderi, M. Assessment of water security under climate change for the large watershed of Dorudzan Dam in southern Iran. Hydrol. J. 28, 1553–1574 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Naghibi, S. A., Vafakhah, M., Hashemi, H., Pradhan, B. & Alavi, S. J. Groundwater augmentation through the site selection of floodwater spreading using a data mining approach (case study: Mashhad Plain, Iran). Water 10, 1405 (2018).

    CAS 

    Google Scholar 

  • Nakai, I. et al. Quality of the groundwater in Toyooka Basin. J. Groundwat. Hydrol. 34, 1–12 (2023).

    ADS 

    Google Scholar 

  • Nandakumaran, P. & Balakrishnan, K. Groundwater quality variations in Precambrian hard rock aquifers: a case study from Kerala, India. Appl. Water Sci. 10, 2 (2020).

    ADS 

    Google Scholar 

  • Naranjo, R. C., Welborn, T. L. & Rosen, M. R. The distribution and modeling of nitrate transport in the Carson Valley alluvial aquifer, Douglas County, Nevada. U.S. Geological Survey Scientific Investigations Report 2013–5136. https://pubs.usgs.gov/sir/2013/5136/pdf/sir2013-5136.pdf (2013).

  • Naranjo-Fernández, N., Guardiola-Albert, C., Aguilera, H., Serrano-Hidalgo, C. & Montero-González, E. Clustering groundwater level time series of the exploited Almonte-Marismas aquifer in Southwest Spain. Water 12, 1063 (2020).

    Google Scholar 

  • Narayan, K. A., Schleeberger, C. & Bristow, K. L. Modelling seawater intrusion in the Burdekin Delta irrigation area, North Queensland, Australia. Agric. Water Manag. 89, 217–228 (2007).

    Google Scholar 

  • Nasiri, A., Shirocova, V. A. & Zareie, S. Zoning of groundwater quality for plain Garmsar in Iran. Water Resour. 46, 624–629 (2019).

    Google Scholar 

  • Nasiri, M., Hamidi, M. & Kardan Moghaddam, H. Investigation of groundwater quantitative and qualitative variations trends (case study: Sari-Neka aquifer). J. Aquifer Qanat 2, 109–122 (2019).

    Google Scholar 

  • Nath, B., Jean, J. S., Lee, M. K., Yang, H. J. & Liu, C. C. Geochemistry of high arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: possible sources and reactive transport of arsenic. J. Contam. Hydrol. 99, 85–96 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nativ, R. & Weisbrod, N. Management of a multilayered coastal aquifer—an Israeli case study. Water Resour. Manag. 8, 297–311 (1994).

    Google Scholar 

  • Navarro, B. J. B. Estado y evolución de los procesos de intrusión marina en la unidad hidrogeológica 08.38 plana de Gandía-Denia (Valencia-Alicante, España). Tecnología De La Intrusión de Agua De Mar en Acuíferos Costeros: Países Mediterráneos. http://aguas.igme.es/igme/publica/tiac-01/Area%20V-17.pdf (2003).

  • Nazari, S. & Ahmadi, A. Non-cooperative stability assessments of groundwater resources management based on the tradeoff between the economy and the environment. J. Hydrol. 578, 124075 (2019).

    Google Scholar 

  • Nazari, S., Ahmadi, A., Rad, S. K. & Ebrahimi, B. Application of non-cooperative dynamic game theory for groundwater conflict resolution. J. Environ. Manag. 270, 110889 (2020).

    Google Scholar 

  • Negarash, H., Shafiei, N. & Doraninejad, M. S. Hydro-geomorphology effect of Nurabad Mamasani plain aquifer on the region’s water resources using GIS. Hydrogeomorphology 2, 55–73 (2016).

    Google Scholar 

  • Neilson-Welch, L. & Allen, D. Groundwater and hydrogeological conditions in the Okanagan Basin, British Columbia: a state-of-the-basin report. Final report prepared for Objective 1 of the Phase 2 Groundwater Supply and Demand Project. https://www.obwb.ca/fileadmin/docs/water_supply_demand/water_supply_demand_final_report.pdf (2007).

  • Nel, L. The Geology of the Springbok Flats. PhD dissertation, Univ. Free State (2012).

  • Nell, J. P. & Van Huyssteen, C. W. Geology and groundwater regions to quantify primary salinity, sodicity and alkalinity in South African soils. S. Afr. J. Plant Soil 31, 127–135 (2014).

    Google Scholar 

  • Nematollahi, M. J., Ebrahimi, P. & Ebrahimi, M. Evaluating hydrogeochemical processes regulating groundwater quality in an unconfined aquifer. Environ. Process. 3, 1021–1043 (2016).

    Google Scholar 

  • Nematollahi, M. J., Ebrahimi, P., Razmara, M. & Ghasemi, A. Hydrogeochemical investigations and groundwater quality assessment of Torbat-Zaveh plain, Khorasan Razavi, Iran. Environ. Monit. Assess. 188, 2 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Newcomb, R. C. Geology and ground-water resources of the Walla Walla River Basin, Washington-Oregon. Washington Division of Water Resources Water Supply Bulletin No. 21. https://apps.ecology.wa.gov/publications/documents/wsb21.pdf (1965).

  • Nguyen, T. T. et al. Clustering spatio–seasonal hydrogeochemical data using self-organizing maps for groundwater quality assessment in the Red River Delta, Vietnam. J. Hydrol. 522, 661–673 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Nickerson, E. L. & Myers, R. G. Geohydrology of the Mesilla ground-water basin, Dona Ana County, New Mexico, and El Paso County, Texas. U.S. Geological Survey Water-Resources Investigations Report 92-4156. https://pubs.usgs.gov/wri/1992/4156/report.pdf (1993).

  • Nilzad, M., Moradi, H. & Jalili, K. Estimation of temporal and spatial variations of the level of the aquifers in Bisotun plain of Kermanshah province with geostatistical methods. Irrig. Water Eng. 8, 79–92 (2018).

    Google Scholar 

  • Nishikawa, T. (ed.) Santa Barbara and Foothill groundwater basins geohydrology and optimal water resources management—developed using density dependent solute transport and optimization models. U.S. Geological Survey Scientific Investigations Report 2018-5059. https://pubs.usgs.gov/sir/2018/5059/sir20185059_.pdf (2018).

  • Nitcheva, O. Hydrology models approach to estimation of the groundwater recharge: case study in the Bulgarian Danube watershed. Environ. Earth Sci. 77, 464 (2018).

    ADS 

    Google Scholar 

  • Nolan, S., Tan, P.-L. & Cox, M. Collaborative water planning: groundwater visualisation tool guide. Charles Darwin University. http://www.nespnorthern.edu.au/wp-content/uploads/2016/02/GVT_Griffith-Uni_13-May-2010-with-corrections1.pdf (2010).

  • Noma, Y., Kino, Y. & Goto, H. Ground water in the Kuzuryu River Basin, Fukui Prefecture [in Japanese]. Bull. Geol. Surv. Jpn. 20, 767–782 (2023).

    Google Scholar 

  • Norouzi, H. & Moghaddam, A. A. Groundwater quality assessment using random forest method based on groundwater quality indices (case study: Miandoab plain aquifer, NW of Iran). Arab. J. Geosci. 13, 912 (2020).

    CAS 

    Google Scholar 

  • Nosrati, K. & Van Den Eeckhaut, M. Assessment of groundwater quality using multivariate statistical techniques in Hashtgerd Plain, Iran. Environ. Earth Sci. 65, 331–344 (2012).

    ADS 
    CAS 

    Google Scholar 

  • NSW Department of Planning and Environment. Lachlan alluvium groundwater resource description. NSW Department of Planning and Environment report. https://water.dpie.nsw.gov.au/__data/assets/pdf_file/0010/175969/Lachlan-alluvium-appendice-a-water-resource-description.pdf (2019).

  • Nuñez Codoseo, J. Evaluación de la disponibilidad de agua del Sector Acuífero Chacabuco-Polpaico: Factibilidad de entrega de nuevos derechos de aprovechamiento de agua provisionales. Thesis, Universidad de Chile (2017).

  • Nyambe, I. A. Tectonic and climatic controls on sedimentation during deposition of the Sinakumbe Group and Karoo Supergroup, in the mid-Zambezi Valley Basin, southern Zambia. J. Afr. Earth. Sci. 28, 443–463 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Nystrom, E. A. Ground-water quality in the Lake Champlain Basin, New York, 2004. U.S. Geological Survey Open-File Report 2006-1088. https://pubs.usgs.gov/of/2006/1088/pdf/Nystrom.OFR2006-1088.pdf (2006).

  • Ojeda Olivares, E. A. et al. Climate change, land use/land cover change, and population growth as drivers of groundwater depletion in the central valleys, Oaxaca, Mexico. Remote Sens. 11, 1290 (2019).

    ADS 

    Google Scholar 

  • Olcott, P. G. Ground Water Atlas of the United States: Segment 12, Connecticut, Maine, Massachusetts, New Hampshire, New York, Rhode Island, Vermont. U.S. Geological Survey Hydrologic Investigations Atlas 730-M. https://pubs.usgs.gov/ha/730m/report.pdf (1995).

  • Olcott, P. G. Groundwater Atlas of the United States: Segment 9, Iowa, Michigan, Minnesota, Wisconsin. U.S. Geological Survey Hydrologic Investigations Atlas 730-J. https://pubs.usgs.gov/ha/730j/report.pdf (1992).

  • Olmsted, F. H., Loeltz, O. J. & Irelan, B. Geohydrology of the Yuma area, Arizona and California. U.S. Geological Survey Professional Paper 486-H. https://pubs.usgs.gov/pp/0486h/report.pdf (1973).

  • Ong’or, B. T. & Long-Cang, S. Groundwater overdraft and the impact of artificial recharge on groundwater quality in a cone of depression, Jining, China. Water Int. 34, 468–483 (2009).

    Google Scholar 

  • Opluštil, S. The effect of paleotopography, tectonics and sediment supply on quality of coal seams in continental basins of central and western Bohemia (Westphalian), Czech Republic. Int. J. Coal Geol. 64, 173–203 (2005).

    Google Scholar 

  • Opluštil, S., Lojka, R. & Pšenika, J. Late Variscan continental basins in western Bohemia: tectono-sedimentary, climate and biotic archives. Schriftreihe Dtsch. Ges. Geowiss. 82, 179–201 (2013).

    Google Scholar 

  • Orban, P. et al. Regional transport modelling for nitrate trend assessment and forecasting in a chalk aquifer. J. Contam. Hydrol. 118, 79–93 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Oregon Water Resources Department, Well Report Query. https://apps.wrd.state.or.us/apps/gw/well_log/Default.aspx (2021).

  • Orehova, T. V. Groundwater in the watershed of Tundja River, Bulgaria. http://router.geology.bas.bg/~orehova/pdf/2006_Groundwater%20Tundja.pdf (2006).

  • Oroji, B. Groundwater vulnerability assessment with using GIS in Hamadan–Bahar plain, Iran. Appl. Water Sci. 9, 196 (2019).

    ADS 

    Google Scholar 

  • Oroji, B. & Karimi, Z. F. Application of DRASTIC model and GIS for evaluation of aquifer vulnerability: case study of Asadabad, Hamadan (western Iran). Geosci. J. 22, 843–855 (2018).

    ADS 

    Google Scholar 

  • Ortiz Letechipia, J. et al. Aqueous arsenic speciation with hydrogeochemical modeling and correlation with fluorine in groundwater in a semiarid region of Mexico. Water 14, 519 (2022).

    CAS 

    Google Scholar 

  • Osborn, N. I. Update of the hydrologic survey of the Tillman Terrace Groundwater Basin, southwestern Oklahoma. Oklahoma Water Resources Board Technical Report GW2002-1. https://www.owrb.ok.gov/studies/reports/reports_pdf/tillman_update.pdf (2002).

  • Ossa-Valencia, J. & Betancur-Vargas, T. Hydrogeochemical characterization and identification of a system of regional flow. Case study: the aquifer on the Gulf of Urabá, Colombia. Rev. Fac. Ing. Univ. Antioquia 86, 9–18 (2018).

    CAS 

    Google Scholar 

  • Othman, A. & Abotalib, A. Z. Land subsidence triggered by groundwater withdrawal under hyper-arid conditions: case study from Central Saudi Arabia. Environ. Earth Sci. 78, 243 (2019).

    ADS 

    Google Scholar 

  • Othman, A. et al. Use of geophysical and remote sensing data for assessment of aquifer depletion and related land deformation. Surv. Geophys. 39, 543–566 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Owen, D. D., Raiber, M. & Cox, M. E. Relationships between major ions in coal seam gas groundwaters: examples from the Surat and Clarence-Moreton basins. Int. J. Coal Geol. 137, 77–91 (2015).

    CAS 

    Google Scholar 

  • Oyarzún, R. et al. Multi-method assessment of connectivity between surface water and shallow groundwater: the case of Limarí River basin, north-central Chile. Hydrol. J. 22, 1857–1873 (2014).

    ADS 

    Google Scholar 

  • Oyarzún, R. et al. A hydrogeochemistry and isotopic approach for the assessment of surface water–groundwater dynamics in an arid basin: the Limarí watershed, North-Central Chile. Environ. Earth Sci. 73, 39–55 (2015).

    ADS 

    Google Scholar 

  • Pacheco-Martínez, J. et al. Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley, México. Eng. Geol. 164, 172–186 (2013).

    Google Scholar 

  • Padilla, I., Irizarry, C. & Steele, K. Historical contamination of groundwater resources in the north coast karst aquifers of Puerto Rico. Rev. Dimens. 3, 7–12 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Panahi, M. R., Mousavi, S. M. & Rahimzadegan, M. Delineation of groundwater potential zones using remote sensing, GIS, and AHP technique in Tehran–Karaj plain, Iran. Environ. Earth Sci. 76, 792 (2017).

    ADS 

    Google Scholar 

  • Parent, M., Rivard, C., Lefebvre, R., Carrier, M.-A. & Séjourné, S. Hydrogeological systems of the Montérégie Est region, southern Québec: Fieldtrip Guidebook, GeoMontreal 2013 Conference. Geological Survey of Canada Open File 7605 (2014).

  • Parizi, E., Hosseini, S. M., Ataie-Ashtiani, B. & Simmons, C. T. Normalized difference vegetation index as the dominant predicting factor of groundwater recharge in phreatic aquifers: case studies across Iran. Sci. Rep. 10, 17473 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parks, K. & Andriashek, L. Preliminary investigation of potential, natural hydraulic pathways between the Scollard and Paskapoo formations in Alberta: implications for coalbed methane production. ERCB/AGS Open File Report 2009-16. https://static.ags.aer.ca/files/document/OFR/OFR_2009_16.pdf (2009).

  • ParsiMehr, M., Shayesteh, K. & Godini, K. The modeling and prediction of the quality of the groundwater resources in Tuyserkan plain using the optimized artificial neural network. J. Adv. Environ. Health Res. 8, 107–118 (2020).

    Google Scholar 

  • Parvaiz, A. et al. Salinity enrichment, sources and its contribution to elevated groundwater arsenic and fluoride levels in Rachna Doab, Punjab Pakistan: Stable isotope (δ2H and δ18O) approach as an evidence. Environ. Pollut. 268, 115710 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Paschke, S. S. Groundwater availability of the Denver Basin aquifer system, Colorado. U.S. Geological Survey Professional Paper 1770. https://pubs.usgs.gov/pp/1770/contents/pp1770.pdf (2011).

  • Pastén-Zapata, E., Ledesma-Ruiz, R., Harter, T., Ramírez, A. I. & Mahlknecht, J. Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Sci. Total Environ. 470, 855–864 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Patenaude, M., Baudron, P., Labelle, L. & Masse-Dufresne, J. Evaluating bank-filtration occurrence in the Province of Quebec (Canada) with a GIS approach. Water 12, 662 (2020).

    Google Scholar 

  • Pathak, D. Hydrogeology of shallow and deep aquifers in Nara Basin, West Japan. J. Nepal Geol. Soc. 43, 267–275 (2011).

    Google Scholar 

  • Paul, B., Raper, P., Simons, J., Stainer, G. & George, R. Weaber Plain aquifer test results. Government of Western Australia, Department of Agriculture and Food Resource Management Technical Report 367. https://library.dpird.wa.gov.au/cgi/viewcontent.cgi?article=1362&context=rmtr (2011).

  • Payne, B. R., Quijano, L. & Latorre, D. C. Environmental isotopes in a study of the origin of salinity of groundwater in the Mexicali Valley. J. Hydrol. 41, 201–215 (1979).

    ADS 
    CAS 

    Google Scholar 

  • Pazand, K. Geochemical and statistical evaluation of groundwater in Razan basin, Western Iran. Carbonates Evaporites 31, 179–185 (2016).

    Google Scholar 

  • Pazand, K. & Javanshir, A. R. Geochemistry and water quality assessment of groundwater around Mohammad Abad Area, Bam District, SE Iran. Water Qual. Expos. Health 6, 225–231 (2014).

    CAS 

    Google Scholar 

  • Pazand, K. & Javanshir, A. R. Hydrogeochemistry and arsenic contamination of groundwater in the Rayen area, southeastern Iran. Environ. Earth Sci. 70, 2633–2644 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Pazand, K., Khosravi, D., Ghaderi, M. R. & Rezvanianzadeh, M. R. Identification of the hydrogeochemical processes and assessment of groundwater in a semi-arid region using major ion chemistry: a case study of Ardestan basin in Central Iran. Groundw. Sustain. Dev. 6, 245–254 (2018).

    Google Scholar 

  • Peeters, L., Batelaan, O. & Dassargues, A. Identification and quantification of sources of major solutes in a sandy, phreatic aquifer in Central Belgium through ionic ratios and geochemical mass-balance modelling. https://orbi.uliege.be/bitstream/2268/3587/1/publi159-2007.pdf (2007).

  • Peña, L. C. B. et al. Identificación de áreas potenciales de recarga hídrica en el acuífero Cuauhtémoc (Chihuahua), mediante una evaluación espacial multi criterio. Estudios territoriales en México: Percepción remota y sistemas de información espacial, 339–362 (2016).

  • Peng, T. R. et al. Using oxygen, hydrogen, and tritium isotopes to assess pond water’s contribution to groundwater and local precipitation in the pediment tableland areas of northwestern Taiwan. J. Hydrol. 450, 105–116 (2012).

    ADS 

    Google Scholar 

  • Perry, E., Velaquez-Oliman, V. & Socki, R. A. in The Lowland Maya Area: Three Millennia at the Human-Wildland Interface (eds Fedick, S., Allen, M., Jim?nez-Osornio, J. & Gomez-Pompa, A.) 115–138 (CRC, 2003).

  • Peterson, S. M., Traylor, J. P. & Guira, M. Groundwater availability of the Northern High Plains aquifer in Colorado, Kansas, Nebraska, South Dakota, and Wyoming. U.S. Geological Survey Professional Paper 1864. https://pubs.usgs.gov/pp/1864/pp1864.pdf (2020).

  • Pétré, M. A., Rivera, A., Lefebvre, R., Hendry, M. J. & Folnagy, A. J. A unified hydrogeological conceptual model of the Milk River transboundary aquifer, traversing Alberta (Canada) and Montana (USA). Hydrol. J. 24, 1847–1871 (2016).

    ADS 

    Google Scholar 

  • Pettifer, G. Bundaberg groundwater investigation, Australia – a case for the benefits of extensive use of geophysics in groundwater investigations. https://library.seg.org/doi/pdf/10.4133/1.2923407 (2004).

  • Phiancharoen, C. Interpretation of the Chemical Analyses of the Ground Water of the Khorat Plateau, Thailand. MSc thesis, Univ. Arizona (1962).

  • Phien-wej, N., Giao, P. H. & Nutalaya, P. Land subsidence in Bangkok, Thailand. Eng. Geol. 82, 187–201 (2006).

    Google Scholar 

  • Phillips, F. M., Bentley, H. W., Davis, S. N., Elmore, D. & Swanick, G. B. Chlorine 36 dating of very old groundwater: 2. Milk River aquifer, Alberta, Canada. Water Resour. Res. 22, 2003–2016 (1986).

    ADS 
    CAS 

    Google Scholar 

  • Pimentel, E. T. & Hamza, V. M. Use of geothermal methods in outlining deep groundwater flow systems in Paleozoic interior basins of Brazil. Hydrol. J. 22, 107–128 (2014).

    ADS 

    Google Scholar 

  • Pinault, J. L., Doerfliger, N., Ladouche, B. & Bakalowicz, M. Characterizing a coastal karst aquifer using an inverse modeling approach: the saline springs of Thau, southern France. Water Resour. Res. 40, W08501 (2004).

    ADS 

    Google Scholar 

  • Pino, E. et al. Factors affecting depletion and pollution by marine intrusion in the La Yarada’s coastal aquifer, Tacna., Peru. Tecnol. Cienc. Agua 10, 177–213 (2019).

    Google Scholar 

  • Pino-Vargas, E., Guevara-Pérez, E. & Avendaño-Jihuallanga, C. Historical evolution of the hydrogeological conceptualization and the use of Caplina aquifer on the northern edge of the Atacama Desert. Rev. Ing. UC 28, 378–391 (2021).

    Google Scholar 

  • Pisani, J. Regional groundwater level analysis pre-summer 2020. Staff Report to the Regional District of Nanaimo. https://rdn-pub.escribemeetings.com/filestream.ashx?DocumentId=13450 (2020).

  • Piyapong, J., Thidarat, B., Jaruwan, C., Siriphan, N. & Passanan, A. Enhancing citizens’ sense of personal responsibility and risk perception for promoting public participation in sustainable groundwater resource management in Rayong Groundwater Basin, Thailand. Groundw. Sustain. Dev. 9, 100252 (2019).

    Google Scholar 

  • Plume, R. W. Hydrogeologic framework and occurrence and movement of ground water in the upper Humboldt River basin, northeastern Nevada. U.S. Geological Survey Scientific Investigations Report 2009-5014. https://pubs.usgs.gov/sir/2009/5014/pdf/sir20095014.pdf (2009).

  • Ponce, V. M., Pandey, R. P. & Kumar, S. Groundwater recharge by channel infiltration in El Barbon basin, Baja California, Mexico. J. Hydrol. 214, 1–7 (1999).

    ADS 

    Google Scholar 

  • Poulsen, D. Culverden Basin hydrogeology. Environment Canterbury Regional Council Report No. R12/96. https://www.ecan.govt.nz/document/download?uri=1723844 (2012).

  • Pourkhosravani, M. Qualitative analysis of Orzooiyeh plain groundwater resources using GIS techniques. Environ. Health Eng. Manag. J. 3, 209–215 (2016).

    Google Scholar 

  • Powell, W. J. Ground-water resources of the San Luis Valley, Colorado. U.S. Geological Survey Water-Supply Paper 1379. https://pubs.usgs.gov/wsp/1379/report.pdf (1958).

  • Pratt, T. R. et al. Hydrogeology of the Northwest Florida Water Management District. Northwest Florida Water Management District, Water Resources Special Report, 96-4. (1996).

  • Barraclough, J. T. & Marsh, O. T. Aquifers and quality of ground water along the Gulf Coast of western Florida. U.S. Geological Survey Report of Investigations No. 29. https://ufdcimages.uflib.ufl.edu/UF/00/00/12/16/00001/UF00001216.pdf (1962).

  • Price, D. Ground water in Utah’s densely populated Wasatch Front area—the challenge and the choices. U.S. Geological Survey Water-Supply Paper 2232. https://pubs.usgs.gov/wsp/2232/report.pdf (1985).

  • Priestley, S. C. et al. Use of U-isotopes in exploring groundwater flow and inter-aquifer leakage in the south-western margin of the Great Artesian Basin and Arckaringa Basin, central Australia. Appl. Geochem. 98, 331–344 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Priestley, S. C. et al. A 35 ka record of groundwater recharge in south-west Australia using stable water isotopes. Sci. Total Environ. 717, 135105 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Priju, C., Sushanth, C. M. & Balan, V. Delineation of freshwater zones in the shallow coastal aquifers of Ernakulam-Chettuva region, Central Kerala, India using electrical resistivity methods. https://assets.researchsquare.com/files/rs-369371/v1/7e2408f9-0dd0-49c2-ab11-1a4457d52b58.pdf (2021).

  • Prior, J. C., Boekhoff, J. L., Howes, M. R., Libra, R. D. & VanDorpe, P. E. Iowa’s groundwater basics. A geological guide to the occurrence, use, & vulnerability of Iowa’s aquifers. Iowa Department of Natural Resources report. https://s-iihr34.iihr.uiowa.edu/publications/uploads/2014-08-24_08-08-21_es-06.pdf (2003).

  • Pulido-Bosch, A. Principles of Karst Hydrogeology: Conceptual Models, Time Series Analysis, Hydrogeochemistry and Groundwater Exploitation (Springer, 2020).

  • Pulido-Bosch, A. et al. Groundwater problems in the karstic aquifers of the Dobrich region, northeastern Bulgaria. Hydrol. Sci. J. 44, 913–927 (1999).

    CAS 

    Google Scholar 

  • Pulido-Bosch, A., Morell, I. & Andreu, J. M. Hydrogeochemical effects of groundwater mining of the Sierra de Crevillente Aquifer (Alicante, Spain). Environ. Geol. 26, 232–239 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Pulido-Velazquez, D., Ahlfeld, D., Andreu, J. & Sahuquillo, A. Reducing the computational cost of unconfined groundwater flow in conjunctive-use models at basin scale assuming linear behaviour: the case of Adra-Campo de Dalías. J. Hydrol. 353, 159–174 (2008).

    ADS 

    Google Scholar 

  • Putthividhya, A. & Laonamsai, J. Hydrological assessment using stable isotope fingerprinting technique in the Upper Chao Phraya river basin. Lowl. Technol. Int. 19, 27–40 (2017).

    Google Scholar 

  • Qasemi, M. et al. Health risk assessment of nitrate exposure in groundwater of rural areas of Gonabad and Bajestan, Iran. Environ. Earth Sci. 77, 551 (2018).

    ADS 

    Google Scholar 

  • Qasemi, M., Afsharnia, M., Zarei, A., Farhang, M. & Allahdadi, M. Non-carcinogenic risk assessment to human health due to intake of fluoride in the groundwater in rural areas of Gonabad and Bajestan, Iran: a case study. Hum. Ecol. Risk Assess. 25, 1222–1233 (2018).

    Google Scholar 

  • Qasim, A., Singh, S. P. & Chandrashekhar, A. K. Geochemical and isotope tracing of groundwater salinity in the coastal Gujarat alluvial plain, India. J. Contam. Hydrol. 248, 104000 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Qian, K., Li, J., Xie, X. & Wang, Y. Organic and inorganic colloids impacting total iodine behavior in groundwater from the Datong Basin, China. Sci. Total Environ. 601, 380–390 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • Qin, D. et al. Assessing impact of irrigation water on groundwater recharge and quality in arid environment using CFCs, tritium and stable isotopes, in the Zhangye Basin, Northwest China. J. Hydrol. 405, 194–208 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Quezadas, J. P., Heilweil, V. M., Silva, A. C., Araguas, L. & Ortega, M. D. R. S. A multi-tracer approach to delineate groundwater dynamics in the Rio Actopan Basin, Veracruz State, Mexico. Hydrol. J. 24, 1953–1966 (2016).

    Google Scholar 

  • Radell, M. J. Three-dimensional Groundwater Flow Model Use and Application: Bishop Basin, Owens Valley, California. MSc thesis, Univ. Arizona. (1989).

  • Radell, M. J., Lewis, M. E. & Watts, K. R. Hydrogeologic characteristics of the alluvial aquifer and adjacent deposits of the Fountain Creek valley, El Paso County, Colorado. U.S. Geological Survey Water-Resources Investigations Report 94-4129. https://pubs.er.usgs.gov/publication/wri944129 (1994).

  • Radfar, M., Van Camp, M. & Walraevens, K. Drought impacts on long-term hydrodynamic behavior of groundwater in the tertiary–quaternary aquifer system of Shahrekord Plain, Iran. Environ. Earth Sci. 70, 927–942 (2013).

    ADS 

    Google Scholar 

  • Rahbar, A. et al. A hydrogeochemical analysis of groundwater using hierarchical clustering analysis and fuzzy C-mean clustering methods in Arak plain, Iran. Environ. Earth Sci. 79, 342 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Rahimi, S., Roodposhti, M. S. & Abbaspour, R. A. Using combined AHP–genetic algorithm in artificial groundwater recharge site selection of Gareh Bygone Plain, Iran. Environ. Earth Sci. 72, 1979–1992 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Rahmati, O., Samani, A. N., Mahmoodi, N. & Mahdavi, M. Assessment of the contribution of N-fertilizers to nitrate pollution of groundwater in western Iran (case study: Ghorveh–Dehgelan Aquifer). Water Qual. Expos. Health 7, 143–151 (2015).

    CAS 

    Google Scholar 

  • Ramirez, E., Robles, E., Sainz, M., Ayala, R. & Campoy, E. Microbiological quality of the Zacatepec aquifer, Morelos, Mexico. Rev. Int. Contam. Ambient. 25, 247–255 (2009).

    CAS 

    Google Scholar 

  • Randich, P. G. & Kuzniar, R. L. Ground-water resources of Towner County, North Dakota. North Dakota State Water Commission report. http://swc.state.nd.us/info_edu/reports_and_publications/county_groundwater_studies/pdfs/Towner_Part_III.pdf (1984).

  • Rangel-Medina, M., Monreal, R., Minjarez, I., de la Cruz, L. & Oroz, L. The saline intrusion in the Costa de Hermosillo aquifer in Sonora, México; a challenge to restore. http://www.swim-site.nl/pdf/swim18/swim18_059.pdf (2004).

  • Ransley, T. R. et al. Hydrogeological atlas of the Great Artesian Basin. Geoscience Australia. http://www.ga.gov.au/scientific-topics/water/groundwater/gab (2015).

  • Ransley, T. R. & Smerdon, B. D. Hydrostratigraphy, hydrogeology and system conceptualisation of the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. https://publications.csiro.au/rpr/download?pid=csiro:EP132693&dsid=DS5 (2012).

  • Raper, G. P. et al. Groundwater trend analysis and salinity risk assessment for the south-west agricultural region of Western Australia, 2007–12. Government of Western Australia, Department of Agriculture and Food Resource Management Technical Report 388. https://library.dpird.wa.gov.au/cgi/viewcontent.cgi?article=1372&context=rmtr (2014).

  • Raper, P., George, R. & Schoknecht, N. Preliminary soil and groundwater assessment of the Mantinea Development area, East Kimberley, Western Australia. Western Australian Agriculture Authority resource management technical report 389. https://www.agric.wa.gov.au/sites/gateway/files/Preliminary%20soil%20and%20groundwater%20assessment%20of%20the%20Mantinea%20Development%20area%2C%20East%20Kimberley%20-%20RMTR%20389%20%28PDF%204.2MB%29.pdf (2015).

  • Rathfelder, K. & Gregory, L. Groundwater quality assessment and proposed objectives for the Osoyoos Aquifer. Water Science Series: WSS2019-06. https://a100.gov.bc.ca/pub/acat/documents/r57603/1_1571784531661_1784376098.pdf (2019).

  • Rathore, V. S., Nathawat, M. S. & Ray, P. C. Influence of neotectonic activity on groundwater salinity and playa development in the Mendha river catchment, western India. Int. J. Remote Sens. 29, 3975–3986 (2008).

    Google Scholar 

  • Rattray, G. Geochemical evolution of groundwater in the Mud Lake area, Eastern Idaho, USA. Environ. Earth Sci. 73, 8251–8269 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Ravenscroft, P., McArthur, J. M. & Rahman, M. S. Identifying multiple deep aquifers in the Bengal Basin: implications for resource management. Hydrol. Process. 32, 3615–3632 (2018).

    ADS 

    Google Scholar 

  • Reichard, E. G. et al. Geohydrology, geochemistry, and ground-water simulation-optimization of the Central and West Coast Basins, Los Angeles County, California. U.S. Geological Survey Water-Resources Investigations Report 03-4065. https://pubs.usgs.gov/wri/wrir034065/wrir034065.pdf (2003).

  • Reidel, S. P., Spane, F. A. & Johnson, V. G. Natural gas storage in basalt aquifers of the Columbia basin, Pacific Northwest USA: a guide to site characterization. Pacific Northwest National Lab (PNNL) Report No. PNNL-13962. https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-13962.pdf (2002).

  • Render, F. W. Aquifer capacity investigations 1980–1986. Manitoba Water Resources Hydrotechnical Services report. https://www.gov.mb.ca/water/pubs/water-science-management/groundwater/publication/1987_render_aquifer_capacity_investigations_1980_1986.pdf (1987).

  • Render, F. W. Water supply capacity of the Assiniboine Delta Aquifer. Can. Water Resour. J. 13, 16–34 (1988).

    Google Scholar 

  • Renken, R. A. et al. Geology and hydrogeology of the Caribbean islands aquifer system of the commonwealth of Puerto Rico and the US Virgin Islands. U.S. Geological Survey Professional Paper 1419. https://pubs.usgs.gov/pp/pp1419/pdf/BOOK.PDF (2002).

  • Renken, R. A. Groundwater Atlas of the United States: Segment 5, Arkansas, Louisiana, Mississippi. U.S. Geological Survey Hydrologic Investigations Atlas 730-F. https://pubs.usgs.gov/ha/730f/report.pdf (1998).

  • Retter, A. et al. Application of the D-A-(C) index as a simple tool for microbial-ecological characterization and assessment of groundwater ecosystems—a case study of the Mur River Valley, Austria. Oesterr. Wasser- Abfallwirtsch. 73, 455–467 (2021).

    Google Scholar 

  • Reza, A. S. et al. A comparative study on arsenic and humic substances in alluvial aquifers of Bengal delta plain (NW Bangladesh), Chianan plain (SW Taiwan) and Lanyang plain (NE Taiwan): implication of arsenic mobilization mechanisms. Environ. Geochem. Health 33, 235–258 (2011).

    Google Scholar 

  • Rezaei, A. & Hassani, H. Hydrogeochemistry study and groundwater quality assessment in the north of Isfahan, Iran. Environ. Geochem. Health 40, 583–608 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Rezaei, A. et al. Evaluation of groundwater quality and heavy metal pollution indices in Bazman basin, southeastern Iran. Groundw. Sustain. Dev. 9, 100245 (2019).

    Google Scholar 

  • Rezaei, A., Hassani, H., Tziritis, E., Mousavi, S. B. F. & Jabbari, N. Hydrochemical characterization and evaluation of groundwater quality in Dalgan basin, SE Iran. Groundw. Sustain. Dev. 10, 100353 (2020).

    Google Scholar 

  • Ribeiro, L. et al. Evaluating piezometric trends using the Mann-Kendall test on the alluvial aquifers of the Elqui River basin, Chile. Hydrol. Sci. J. 60, 1840–1852 (2015).

    Google Scholar 

  • Richardson, G. B. Underground water in Sanpete and Central Sevier Valleys, Utah. U.S. Geological Survey Water-Supply and Irrigation Paper No. 199. https://pubs.usgs.gov/wsp/0199/report.pdf (1907).

  • Rinehart, A., Koning, D. & Timmons, S. Hydrogeology of the San Agustin Plains. Presentation at the 62nd New Mexico Water Conference. https://geoinfo.nmt.edu/geoscience/research/documents/37/D2_07_Alex_Rinehart.pdf (2017).

  • Rivard, C., Michaud, Y., Lefebvre, R., Deblonde, C. & Rivera, A. Characterization of a regional aquifer system in the Maritimes Basin, Eastern Canada. Water Resour. Manag. 22, 1649–1675 (2008).

    Google Scholar 

  • Rivera-Hernández, J. R., Green-Ruiz, C., Pelling-Salazar, L. & Trejo-Alduenda, A. Hydrochemistry of the Mocorito river coastal aquifer, Sinaloa, Mexico: water quality assessment for human consumption and agriculture suitability. Hidrobiológica 27, 103–113 (2017).

    Google Scholar 

  • Roark, D. M., Holmes, W. F. & Shlosar, H. K. Hydrology of Heber and Round Valleys, Wasatch County, Utah, with emphasis on simulation of ground-water flow in Heber Valley. U.S. Geological Survey Technical Publication No. 101. https://waterrights.utah.gov/docSys/v920/y920/y9200009.pdf (1991).

  • Robertson, A. J. et al. Mesilla/Conejos-Médanos Basin: US-Mexico transboundary water resources. Water 14, 134 (2022).

    Google Scholar 

  • Robins, N. S. & Ball, D. F. The Dumfries Basin aquifer. British Geological Survey Research Report RR/06/02. http://nora.nerc.ac.uk/id/eprint/3685/1/RR06002.pdf (2006).

  • Robles, E., Ramirez, E., de Guadalupe Sáinz, M., Duran, A. & González, M. E. Bacteriological and physicochemical study on the water of an aquifer in Mexico. Univers. J. Environ. Res. Technol. 3, 158–172 (2013).

    Google Scholar 

  • Rodgers, K. D. Water-level trends and potentiometric surfaces in the Nacatoch Aquifer in northeastern and southwestern Arkansas and in the Tokio Aquifer in southwestern Arkansas, 2014–15. U.S. Geological Survey Scientific Investigations Report 2017-5090. https://pubs.usgs.gov/sir/2017/5090/sir20175090.pdf (2017).

  • Rodrigo-Naharro, J., Aracil, E. & del Villar, L. P. Geophysical investigations in the Gañuelas-Mazarrón Tertiary basin (SE Spain): a natural analogue of a geological CO2 storage affected by anthropogenic leakages. J. Appl. Geophys. 155, 187–198 (2018).

    ADS 

    Google Scholar 

  • Rodríguez, L., Vives, L. & Gomez, A. Conceptual and numerical modeling approach of the Guarani Aquifer System. Hydrol. Earth Syst. Sci. 17, 295–314 (2013).

    ADS 

    Google Scholar 

  • Rodriguez-Rodriguez, M., Martos-Rosillo, S. & Pedrera, A. Hydrogeological behaviour of the Fuente-de-Piedra playa lake and tectonic origin of its basin (Malaga, southern Spain). J. Hydrol. 543, 462–476 (2016).

    ADS 

    Google Scholar 

  • Rojas, R. et al. Groundwater resource assessment and conceptualization in the Pilbara Region, Western Australia. Earth Syst. Environ. 2, 345–365 (2018).

    Google Scholar 

  • Roques, C., Bour, O., Aquilina, L. & Dewandel, B. High-yielding aquifers in crystalline basement: insights about the role of fault zones, exemplified by Armorican Massif, France. Hydrol. J. 24, 2157–2170 (2016).

    ADS 

    Google Scholar 

  • Rosário de Jesus, M. Groundwater protection for public water-supply in Portugal. https://unece.org/fileadmin/DAM/env/water/meetings/groundwater01/portugal.pdf (2001).

  • Rose, T. P., Davisson, M. L., Smith, D. K. & Kenneally, J. M. Isotope hydrology investigation of regional groundwater flow in central Nevada. Hydrologic Resources Management Program and Underground Test Area Operable Unit FY 1997 Progress Report, Ch. 6. https://core.ac.uk/download/pdf/204554577.pdf#page=62 (1998).

  • Rose, T. P., Davisson, M. L., Hudson, G. B. & Varian, A. R. Environmental isotope investigation of groundwater flow in the Honey Lake Basin, California and Nevada. Department of Energy Report UCRL-ID-127978 ON: DE98051049. https://www.osti.gov/servlets/purl/620597 (1997).

  • Rostami, A. A., Isazadeh, M., Shahabi, M. & Nozari, H. Evaluation of geostatistical techniques and their hybrid in modelling of groundwater quality index in the Marand Plain in Iran. Environ. Sci. Pollut. Res. 26, 34993–35009 (2019).

    CAS 

    Google Scholar 

  • Rostkier‐Edelstein, D. et al. Towards a high‐resolution climatography of seasonal precipitation over Israel. Int. J. Climatol. 34, 1964–1979 (2014).

    Google Scholar 

  • Rotzoll, K., Gingerich, S. B., Jenson, J. W. & El-Kadi, A. I. Estimating hydraulic properties from tidal attenuation in the Northern Guam Lens Aquifer, territory of Guam, USA. Hydrol. J. 21, 643–654 (2013).

    ADS 

    Google Scholar 

  • Rouillard, J. & Maréchal, J.-C. in Sustainable Groundwater Management: A Comparative Analysis of French and Australian Policies and Implications to Other Countries (eds Rinaudo, J.-D., Holley, C., Barnett, S. & Montginoul, M.) 17–45 (Springer, 2020).

  • Rupérez-Moreno, C., Pérez-Sánchez, J., Senent-Aparicio, J. & del Pilar Flores-Asenjo, M. The economic value of conjoint local management in water resources: results from a contingent valuation in the Boquerón aquifer (Albacete, SE Spain). Sci. Total Environ. 532, 255–264 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • Rupérez-Moreno, C. et al. Sustainability of irrigated agriculture with overexploited aquifers: the case of Segura basin (SE, Spain). Agric. Water Manag. 182, 67–76 (2017).

    Google Scholar 

  • Rushton, K. R. & Rao, S. R. Groundwater flow through a Miliolite limestone aquifer. Hydrol. Sci. J. 33, 449–464 (1988).

    Google Scholar 

  • Rutulis, M. Aquifer maps of southern Manitoba. Manitoba Water Resources Branch map. https://www.gov.mb.ca/water/pubs/maps/water/1986_rutulis_bedrock_aquifers.pdf (1986).

  • Ruybal, C. J., Hogue, T. S. & McCray, J. E. Assessment of groundwater depletion and implications for management in the Denver Basin Aquifer System. J. Am. Water Resour. Assoc. 55, 1130–1148 (2019).

    ADS 

    Google Scholar 

  • Ryder, P. Ground Water Atlas of the United States: Segment 4, Oklahoma, Texas. U.S. Geological Survey Hydrologic Investigations Atlas 730-E. https://pubs.usgs.gov/ha/730e/report.pdf (1996).

  • Saadatmand, A., Noorollahi, Y., Yousefi, H. & Mohammadi, A. Investigation, modeling and analysis of qualitative parameters of groundwater resources in Kurdistan’s Kamyaran plain. Iran. J. Ecohydrol. 8, 357–367 (2021).

    Google Scholar 

  • Sabzevari, Y., Nasrolahi, A. H. & Yonesi, H. A. Investigation of temporal-spatial variations of groundwater resources quality in Borujerd-Dorood Plain. Irrig. Water Eng. 11, 150–167 (2020).

    Google Scholar 

  • Sadeghfam, S., Hassanzadeh, Y., Nadiri, A. A. & Khatibi, R. Mapping groundwater potential field using catastrophe fuzzy membership functions and Jenks optimization method: a case study of Maragheh-Bonab plain, Iran. Environ. Earth Sci. 75, 545 (2016).

    ADS 

    Google Scholar 

  • Sadid, N. Surface-groundwater interaction in the Kabul region basin. Afghanistan Research and Evaluation Unit Report. https://reliefweb.int/sites/reliefweb.int/files/resources/2005-E-Surface-groundwater-interaction-in-the-Kabul-region-basin.pdf (2020).

  • Saeidi, H., Lashkaripour, G. & Ghafoori, M. Evaluation of land subsidence in Kashmar-Bardaskan plain, NE Iran. Iran. J. Earth Sci. 12, 280–291 (2020).

    Google Scholar 

  • Saffari, A., Jan Ahmadi, M. & Raeati Shavazi, M. Site selection for suitable flood spreadingand artificial feeding through hybrid, AHP-Fuzzy Model Case Study: (Bushkan Plain, Bushehr Province). Hydrogeomorphology 1, 81–97 (2015).

    Google Scholar 

  • Saffi, M. H. National alarming on groundwater natural storage depletion and water quality deterioration of Kabul City and immediate response to the drinking water crises. Scientific Investigation Report in Afghanistan, DACAAR report (2019).

  • Saha, D. & Gor, N. A prolific aquifer system is in peril in arid Kachchh region of India. Groundw. Sustain. Dev. 11, 100394 (2020).

    Google Scholar 

  • Saha, D. & Ray, R. K. in Groundwater Development and Management (ed. Sikdar, P. K.) 19–42 (Springer, 2019).

  • Saha, D., Shekhar, S., Ali, S., Vittala, S. S. & Raju, N. J. Recent hydrogeological research in India. Proc. Indian Natl Sci. Acad. 82, 787–803 (2016).

    Google Scholar 

  • Sahoo, S., Dhar, A., Kar, A. & Chakraborty, D. Index-based groundwater vulnerability mapping using quantitative parameters. Environ. Earth Sci. 75, 522 (2016).

    ADS 

    Google Scholar 

  • Sahu, J. K., Das, P. P., Sahoo, H. K., Mohapatra, P. P. & Sahoo, S. Geospatial analysis and hydrogeochemical investigation of a part of southern Mahanadi delta, Odisha, India. Himal. Geol. 39, 92–100 (2018).

    Google Scholar 

  • Sahu, S., Gogoi, U. & Nayak, N. C. Patterns of groundwater chemistry: implications of groundwater flow and the relation with groundwater fluoride contamination in the phreatic aquifer of Odisha, India. Arab. J. Geosci. 13, 1272 (2020).

    CAS 

    Google Scholar 

  • Sajil Kumar, P. J. & James, E. J. Identification of hydrogeochemical processes in the Coimbatore district, Tamil Nadu, India. Hydrol. Sci. J. 61, 719–731 (2016).

    CAS 

    Google Scholar 

  • Sakai, A. Land subsidence due to seasonal pumping of groundwater in Saga Plain, Japan. Lowl. Technol. Int. 3, 25–40 (2001).

    Google Scholar 

  • Salehabadi, G. The effect of groundwater in plain settlement in Jovin. Sci. Res. Q. Geogr. Data 22, 30–34 (2021).

    Google Scholar 

  • Salehi, H. & Zeinivand, H. Evaluation and mapping of groundwater quality for rigation and drinking purposes in Kuhdasht region, Iran. Environ. Resour. Res. 4, 75–89 (2016).

    Google Scholar 

  • Salemi, H. R. et al. Water management for sustainable irrigated agriculture in the Zayandeh Rud Basin, Esfahan Province, Iran. Report by Iranian Agricultural Engineering Research Institute, Esfahan Agricultural Research Center and the International Water Management Institute, Research Report Number 1 (2000).

  • Salinas Valley Basin Integrated Sustainability Plan. https://svbgsa.org/wp-content/uploads/2019/03/Valley-Wide-Integrated-Sustainability-Plan-optimized.pdf (2020).

  • Saltel, M. et al. Paleoclimate variations and impact on groundwater recharge in multi-layer aquifer systems using a multi-tracer approach (northern Aquitaine basin, France). Hydrol. J. 27, 1439–1457 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Samantaray, S., Rath, A. & Swain, P. C. Conjunctive use of groundwater and surface water in a part of Hirakud Command Area. Int. J. Eng. Technol. 9, 3002–3010 (2017).

    Google Scholar 

  • Samper, J. et al. Evaluació de los impactos del cambio climático e los acuíferos de la pla a de la galera y del aluvial de Tortosa. Estudios en la Zona no Saturada del Suelo. Vol. X, 359–364. http://zonanosaturada.com/zns11/publications/p359.pdf (2011).

  • Sanchez, R. & Eckstein, G. Groundwater management in the borderlands of Mexico and Texas: the beauty of the unknown, the negligence of the present, and the way forward. Water Resour. Res. 56, e2019WR026068 (2020).

    ADS 

    Google Scholar 

  • Sanchez, R., Lopez, V. & Eckstein, G. Identifying and characterizing transboundary aquifers along the Mexico–US border: an initial assessment. J. Hydrol. 535, 101–119 (2016).

    ADS 

    Google Scholar 

  • Sandberg, G. W. Ground-water resources of selected basins in southwestern Utah. U.S. Geological Survey Open Technical Publication 13. https://waterrights.utah.gov/docSys/v920/w920/w920008c.pdf (1966).

  • Sandiford, M., Lawrie, K. & Brodie, R. S. Hydrogeological implications of active tectonics in the Great Artesian Basin, Australia. Hydrol. J. 28, 57–73 (2020).

    Google Scholar 

  • Sanford, W. E. & Buapeng, S. Assessment of a groundwater flow model of the Bangkok Basin, Thailand, using carbon-14-based ages and paleohydrology. Hydrol. J. 4, 26–40 (1996).

    ADS 

    Google Scholar 

  • Sanford, W. E., Pope, J. P., Selnick, D. L. & Stumvoll, R. F. Simulation of groundwater flow in the shallow aquifer system of the Delmarva Peninsula, Maryland and Delaware. U.S. Geological Survey Open-File Report 2012–1140. https://pubs.usgs.gov/of/2012/1140/pdf/OFR_2012-1140.pdf (2012).

  • Santha, N., Sangkajan, S. & Saenton, S. Arsenic contamination in groundwater and potential health risk in Western Lampang Basin, Northern Thailand. Water 14, 465 (2022).

    CAS 

    Google Scholar 

  • Santoni, S. et al. Strontium isotopes as tracers of water-rocks interactions, mixing processes and residence time indicator of groundwater within the granite-carbonate coastal aquifer of Bonifacio (Corsica, France). Sci. Total Environ. 573, 233–246 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sanz, D. et al. Modeling aquifer–river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain). Hydrol. J. 19, 475–487 (2011).

    ADS 

    Google Scholar 

  • Savoca, M. E., Sadorf, E. M. & Akers, K. K. Ground-water quality in the eastern part of the Silurian-Devonian and Upper Carbonate Aquifers in the eastern Iowa basins, Iowa and Minnesota, 1996. U.S. Geological Survey Water-Resources Investigations Report 98-4224. https://pubs.usgs.gov/wri/1998/wri984224/pdf/wri98-4224.pdf (1999).

  • Schoewe, W. H. The geography of Kansas: Part II. Physical geography. Trans. Kans. Acad. Sci. 52, 261–333 (1949).

    Google Scholar 

  • Schrader, G. P. Unconsolidated aquifer systems of Ripley County, Indiana. Indiana Department of Natural Resources, Division of Water report. https://www.in.gov/dnr/water/files/ripley_unconsolidated_text.pdf (2004).

  • Schult, J. Herbicides, pesticides and nutrients in the Tindall aquifer, Katherine Region. Northern Territory Government, Department of Land Resource Management report. https://landresources.nt.gov.au/__data/assets/pdf_file/0019/282160/GWQ-report.pdf (2016).

  • Schwennesen, A. T. & Forbes, R. H. Ground water in San Simon Valley, Arizona and New Mexico. U.S. Geological Survey Water Supply Paper 425-A. https://pubs.usgs.gov/wsp/0425a/report.pdf (1919).

  • Schwennesen, A. T. & Hare, R. F. Ground water in the Animas, Playas, Hachita, and San Luis Basins, New Mexico, with analyses of water and soil. U.S. Geological Survey Water-Supply Paper 422. https://pubs.usgs.gov/wsp/0422/report.pdf (1918).

  • Scibek, J. & Allen, D. M. Numerical groundwater flow model of the Abbotsford-Sumas aquifer, central Fraser Lowland of BC, Canada, and Washington State, US. Report prepared for Environment Canada. https://www.sfu.ca/personal/dallen/AB_Modeling_Report_Final.pdf (2005).

  • Scott, L., Hanson, C. & Cressy, C. Groundwater quality investigation of the mid-Waitaki valley. Environment Canterbury Regional Council Kaunihera Taiao ki Waitaha Report No. R12/71. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.799.6506&rep=rep1&type=pdf (2012).

  • Scott, T.-M., Nystrom, E. A. & Reddy, J. E. Groundwater quality in the Lake Champlain and Susquehanna River basins, New York, 2014. U.S. Geological Survey Open-File Report 2016-1153. https://pubs.usgs.gov/of/2016/1153/ofr20161153.pdf (2016).

  • Selck, B. J. et al. Investigating anthropogenic and geogenic sources of groundwater contamination in a semi-arid alluvial basin, Goshen Valley, UT, USA. Water Air Soil Pollut. 229, 186 (2018).

    ADS 

    Google Scholar 

  • Semeniuk, V. & Semeniuk, C. A. Sedimentary fill of basin wetlands, central Swan Coastal Plain, southwestern Australia. Part 2: distribution of sediment types and their stratigraphy. J. R. Soc. West. Aust. 89, 185 (2006).

    Google Scholar 

  • Senthilkumar, M. & Gnanasundar, D. Hydrogeological characterization and hydrological modeling for devising groundwater management strategies for Chennai aquifer system, Southern India. https://www.authorea.com/doi/full/10.22541/au.158990356.67099058 (2020).

  • Seraphin, P., Gonçalvès, J., Vallet-Coulomb, C. & Champollion, C. Multi-approach assessment of the spatial distribution of the specific yield: application to the Crau plain aquifer, France. Hydrol. J. 26, 1221–1238 (2018).

    ADS 

    Google Scholar 

  • Serrat, P. & Lenoble, J. L. La surexploitation des aquifères du Roussillon: une ressource patrimoniale en danger. Houille Blanche 93, 71–78 (2007).

    ADS 

    Google Scholar 

  • Serviço Geológico do Brasil. Aquífero Urucuia Caracterização hidrológica com base em dados secundários. Inistério de Minas e Energia Secretaria de Geologia, Mineração e Transformação Mineral Serviço Geológico do Brasil (CPRM) report. https://rigeo.cprm.gov.br/jspui/handle/doc/20922 (2019).

  • Shabani, M. Determining the most suitable interpolation method for groundwater chemical characteristics mapping. Watershed Eng. Manag. 3, 196–204 (2012).

    Google Scholar 

  • Shah, T. Towards a managed aquifer recharge strategy for Gujarat, India: an economist’s dialogue with hydro-geologists. J. Hydrol. 518, 94–107 (2014).

    ADS 

    Google Scholar 

  • Shahmohammadi-Kalalagh, S., Taran, F. & Nasiri, H. Investigating groundwater level fluctuations via analyzing groundwater hydrograph: a case study of Naqadeh plain in north-west of Iran. Sustain. Water Resour. Manag. 6, 8 (2020).

    Google Scholar 

  • Shalyari, N., Alinejad, A., Hashemi, A. H. G., RadFard, M. & Dehghani, M. Health risk assessment of nitrate in groundwater resources of Iranshahr using Monte Carlo simulation and geographic information system (GIS). MethodsX 6, 1812–1821 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shams, M. et al. Drinking water in Gonabad, Iran: fluoride levels in bottled, distribution network, point of use desalinator, and decentralized municipal desalination plant water. Fluoride 45, 138 (2012).

    CAS 

    Google Scholar 

  • Shamsudduha, M. Spatial variability and prediction modeling of groundwater arsenic distributions in the shallowest alluvial aquifers in Bangladesh. J. Spat. Hydrol. 7, 33–46 (2007).

    Google Scholar 

  • Sharaf, M. A. & Hussein, M. T. Groundwater quality in the Saq aquifer, Saudi Arabia. Hydrol. Sci. J. 41, 683–696 (1996).

    CAS 

    Google Scholar 

  • Sharpe, D. R. et al. in: Canada’s Groundwater Resources, (ed. Rivera, A.) 444–499 (Fitzhenry and Whiteside, 2013).

  • Shelton, J. L., Fram, M. S., Munday, C. M. & Belitz, K. Groundwater-quality data for the Sierra Nevada study unit, 2008. Results from the California GAMA program. U.S. Geological Survey Data Series 534. https://pubs.usgs.gov/ds/534/ds_534.pdf (2010).

  • Sheppard, G. M. The Hydrogeology of the Kaikoura Plains, North Canterbury, New Zealand. PhD dissertation, Univ. Canterbury (1995).

  • Shintani, T. et al. Three-dimensional structure and sources of groundwater masses beneath the Osaka Plain, Southwest Japan. J. Hydrol. Reg. Stud. 43, 101193 (2022).

    Google Scholar 

  • Shterev, K. D. The hydrogeothermal basin of Sofia graben (Bulgaria). Environ. Geol. 46, 651–660 (2004).

    CAS 

    Google Scholar 

  • Shu, L. C., Liu, P. G. & Ong’or, B. T. I. Environmental impact assessment using FORM and groundwater system reliability concept: case study Jining, China. Environ. Geol. 55, 661–667 (2008).

    ADS 

    Google Scholar 

  • Siebenthal, C. E. Geology and water resources of the San Luis Valley, Colorado. U.S. Geological Survey Water-Supply Paper 240. https://pubs.usgs.gov/wsp/0240/report.pdf (1910).

  • Sikandar, P., Bakhsh, A., Arshad, M. & Rana, T. The use of vertical electrical sounding resistivity method for the location of low salinity groundwater for irrigation in Chaj and Rachna Doabs. Environ. Earth Sci. 60, 1113–1129 (2010).

    ADS 

    Google Scholar 

  • Silar, J. & Silar, J. in Application of Tracers in Arid Zone Hydrology (eds Adar, E. M. & Leibundgut, C.) 141–150 (IAHS, 1995).

  • Simonson, B. M., Schubel, K. A. & Hassler, S. W. Carbonate sedimentology of the early Precambrian Hamersley Group of western Australia. Precambrian Res. 60, 287–335 (1993).

    ADS 

    Google Scholar 

  • Simpson, M. A. Geology and hydrostratigraphy of the Rosetown Area (72O), Saskatchewan. Saskatchewan Research Council Publication No. 10416-2C98. https://www.wsask.ca/wp-content/uploads/2021/08/Groundwater-Resources-Report-Rosetown.pdf (1998).

  • Singaraja, C. et al. A study on the status of saltwater intrusion in the coastal hard rock aquifer of South India. Environ. Dev. Sustain. 17, 443–475 (2015).

    Google Scholar 

  • Singh, J., Erenstein, O., Thorpe, W. R. & Varma, A. Crop-livestock interactions and livelihoods in the Gangetic Plains of Uttar Pradesh, India: a regional synthesis. International Livestock Research Institute (2007).

  • Singh, Y. & Dubey, D. P. in Watershed Management for Sustainable Development (eds Tiwari, R. N. & Pandey, G. P.) 122–134 (Excellent Publishing House, 2014).

  • Sinsakul, S. Late quaternary geology of the lower central plain, Thailand. J. Asian Earth Sci. 18, 415–426 (2000).

    ADS 

    Google Scholar 

  • Sloan, M., Gillies, J. A. & Norum, D. I. Using poor quality groundwater for irrigation in Saskatchewan, Canada. Can. Water Resour. J. 16, 45–64 (1991).

    Google Scholar 

  • Smedley, P. L., Zhang, M., Zhang, G. & Luo, Z. Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl. Geochem. 18, 1453–1477 (2003).

    ADS 
    CAS 

    Google Scholar 

  • Smerdon, B. D. & Ramsley, T. R. Water resource assessment for the Surat region. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. https://publications.csiro.au/rpr/download?pid=csiro:EP132644&dsid=DS4 (2012).

  • Smerdon, B. D., Ramsley, T. R., Radke, B. M., Kellett, J. R. Water resource assessment for the Great Artesian Basin. A technical report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. https://publications.csiro.au/rpr/download?pid=csiro:EP132685&dsid=DS3 (2012).

  • Smit, P. J. Groundwater recharge in the dolomite of the Ghaap Plateau near Kuruman in the Northern Cape, Republic of South Africa. Water SA 4, 81–92 (1978).

    ADS 

    Google Scholar 

  • Smith, D. W., Buto, S. G. & Welborn, T. L. Groundwater-level change and evaluation of simulated water levels for irrigated areas in Lahontan Valley, Churchill County, west-central Nevada, 1992–2012. U.S. Geological Survey Scientific Investigations Report 2016-5045. https://pubs.usgs.gov/sir/2016/5045/sir20165045.pdf (2016).

  • Smith, K. Assessing the Hydrogeologic Characteristics and Sources of Groundwater Recharge and Flow in the Elandsfontein Aquifer, West Coast, Western Cape, South Africa. MSc thesis, Univ. Western Cape (2020).

  • Smith, L. N. Hydrologic framework of the Lolo-Bitterroot Area ground-water characterization study. Montana Bureau of Mines and Geology. Montana Ground-Water Assessment Atlas 4-B-02. http://mbmg.mtech.edu/pdf-publications/GWAA04B-02.pdf (2006).

  • Smith, L. N., LaFave, J. I. & Patton, T. W. Groundwater resources of the Lolo-Bitterroot area: Mineral, Missoula, and Ravalli counties, Montana. Montana Bureau of Mines and Geology. Montana Groundwater Assessment Atlas No. 4. http://www.mbmg.mtech.edu/pdf-publications/gwaa4a.pdf (2013).

  • Smith, L. N. Hydrogeologic framework of the southern part of the Flathead Lake Area, Flathead, Lake, Missoula, and Sanders counties, Montana. Montana Bureau of Mines and Geology. Montana Ground-Water Assessment Atlas 2-B-10. http://mbmggwic.mtech.edu/gwcpmaps/gwaa02map10untiled.pdf (2004).

  • Smith, M. L., Fontaine, K. & Lewis, S. J. Regional hydrogeological characterisation of the St Vincent Basin, South Australia. Technical Report for the National Collaboration Framework Regional Hydrogeology Project. Geoscience Australia Record 2015/16. https://d28rz98at9flks.cloudfront.net/78884/Rec2015_016.pdf (2015).

  • Smith, S. J. et al. Hydrogeology and model-simulated groundwater availability in the Salt Fork Red River aquifer, southwestern Oklahoma, 1980–2015. U.S. Geological Survey Scientific Investigations Report 2021-5003. https://pubs.usgs.gov/sir/2021/5003/sir20215003.pdf (2021).

  • Smith, S. J., Ellis, J. H., Wagner, D. L. & Peterson, S. M. Hydrogeology and simulated groundwater flow and availability in the North Fork Red River aquifer, southwest Oklahoma, 1980–2013. U.S. Geological Survey Scientific Investigations Report 2017-5098. https://pubs.usgs.gov/sir/2017/5098/sir20175098.pdf (2017).

  • Smolensky, D. A., Buxton, H. T. & Shernoff, P. K. Hydrologic framework of Long Island, New York. U.S. Geological Survey Hydrologic Atlas 709. https://pubs.usgs.gov/ha/709/plate-1.pdf (1990).

  • Sneed, M., Brandt, J. T. & Solt, M. Land subsidence, groundwater levels, and geology in the Coachella Valley, California, 1993–2010. U.S. Geological Survey Scientific Investigations Report 2014-5075. https://pubs.usgs.gov/sir/2014/5075/pdf/sir2014-5075.pdf (2014).

  • Sohrabi, N., Chitsazan, M., Amiri, V. & Nezhad, T. M. Evaluation of groundwater resources in alluvial aquifer based on MODFLOW program, case study: Evan plain (Iran). Int. J. Agric. Crop Sci. 5, 1164–1170 (2013).

    Google Scholar 

  • Soldo, B., Mahmoudi Sivand, S., Afrasiabian, A. & Đurin, B. Effect of sinkholes on groundwater resources in arid and semi-arid karst area in Abarkooh, Iran. Environments 7, 26 (2020).

    Google Scholar 

  • Soltani Mohammadi, A., Sayadi Shahraki, A. & Naseri, A. A. Simulation of groundwater quality parameters using ANN and ANN+ PSO models (case study: Ramhormoz Plain). Pollution 3, 191–200 (2017).

    Google Scholar 

  • Soltani, S., Asghari Moghaddam, A., Barzegar, R. & Kazemian, N. Evaluation of nitrate concentration and vulnerability of the groundwater by GODS and AVI methods (case study: Kordkandi-Duzduzan Plain, East Azarbaijan province). Iran. J. Ecohydrol. 3, 517–531 (2016).

    Google Scholar 

  • Soltani, S., Moghaddam, A. A., Barzegar, R., Kazemian, N. & Tziritis, E. Hydrogeochemistry and water quality of the Kordkandi-Duzduzan plain, NW Iran: application of multivariate statistical analysis and PoS index. Environ. Monit. Assess. 189, 455 (2017).

    PubMed 

    Google Scholar 

  • Sorensen, J. P. et al. The influence of groundwater abstraction on interpreting climate controls and extreme recharge events from well hydrographs in semi-arid South Africa. Hydrogeol. J., 1–15 (2021).

  • Souid, F., Birkle, P. & Worrall, F. Water-rock interaction of the Jilh and Tawil aquifers in the Wadi Sirhan Basin, NW Saudi Arabia. E3S Web Conf. 98, 01047 (2019).

    CAS 

    Google Scholar 

  • South African Department of Water Affairs. Aquifer classification of South Africa. https://www.dws.gov.za/Groundwater/documents/Aquifer%20Classification.pdf (2012).

  • Squeo, F. A. et al. Groundwater dynamics in a coastal aquifer in north-central Chile: implications for groundwater recharge in an arid ecosystem. J. Arid. Environ. 67, 240–254 (2006).

    ADS 

    Google Scholar 

  • Sreenivas, A., Gowtham, B., Vinodh, K. & Kumaresan, K. Aquifer mapping of hard rock terrain in parts of Dindigul district, Tamil Nadu. Int. J. Anal. Exp. Modal Anal. 12, 200–211 (2020).

    Google Scholar 

  • Srivastava, M. & Poonia, O. P. Transboundary aquifers in Rajasthan, issues & management. Bhujal News, 28–36. https://hindi.indiawaterportal.org/articles/transboundary-aquifers-rajasthan-issues-management (2010).

  • Stamos, C. L., Christensen, A. H. & Langenheim, V. Preliminary hydrogeologic assessment near the boundary of the Antelope Valley and El Mirage Valley groundwater basins, California. U.S. Geological Survey Scientific Investigations Report 2017-5065. https://pubs.usgs.gov/sir/2017/5065/sir20175065.pdf (2017).

  • Standen, A. R. & Kane, J. A. The spatial distribution of radiological contaminants in the Hickory aquifer and other aquifers overlying the Llano Uplift, Central Texas. Austin Geol. Soc. Bull. 1, 87–101 (2023).

    Google Scholar 

  • Stapinsky, M. et al. Groundwater resources assessment in the Carboniferous Maritimes Basin: preliminary results of the hydrogeological characterization, New Brunswick, Nova Scotia, and Prince Edward Island. Geological Survey of Canada Current Research Report 2002-D8. http://www.gov.pe.ca/photos/original/cle_WA10.pdf (2002).

  • State of New Mexico, Office of the State Engineer. Nutt-Hockett Basin Hydrographic Survey Report. https://www.ose.state.nm.us/HydroSurvey/legal_ose_hydro_nutt-hocket.php (1998).

  • Steinbrügge, G., Muñoz Pardo, J. F. & Fernández, B. Análisis probabilístico y optimización de los recursos de agua subterránea: el caso del acuífero Maipo-Mapocho, Chile. Ingenieria hidraulica en Mexico, XX, 85–97. https://repositorio.uc.cl/dspace/bitstreams/2172bd6b-172e-4233-806a-c9c2b0af5c13/download (2005).

  • Steinich, B., Escolero, O. & Marín, L. E. Salt-water intrusion and nitrate contamination in the Valley of Hermosillo and El Sahuaral coastal aquifers, Sonora, Mexico. Hydrol. J. 6, 518–526 (1998).

    ADS 

    Google Scholar 

  • Stephenson, D. A. Hydrogeology of glacial deposits of the Mahomet Bedrock Valley in east-central Illinois. Illinois State Geological Survey Circular 409. https://www.ideals.illinois.edu/items/35335/bitstreams/112693/data.pdf (1967).

  • Stephenson, L. W. The ground-water resources of Mississippi. U.S. Geological Survey Water-Supply Paper 576. https://pubs.usgs.gov/wsp/0576/report.pdf (1941).

  • Steuer, A., Helwig, S. L. & Tezkan, B. Aquifer characterization in the Ouarzazate Basin (Morocco): a contribution by TEM and RMT data. Near Surf. Geophys. 6, 5–14 (2008).

    Google Scholar 

  • Stolp, B. J. et al. Age dating base flow at springs and gaining streams using helium‐3 and tritium: Fischa‐Dagnitz system, southern Vienna Basin, Austria. Water Resour. Res. 46, W07503 (2010).

    ADS 

    Google Scholar 

  • Story, J. & Lopez-Gunn, E. Comparing conflict in transboundary aquifer management: some insights from a comparative study between Spain and Australia. https://unesdoc.unesco.org/ark:/48223/pf0000190140 (2010).

  • Strom, E. W. & Mallory, M. J. Hydrogeology and simulation of ground-water flow in the Eutaw-McShan Aquifer and in the Tuscaloosa aquifer system in northeastern Mississippi. U.S. Geological Survey Water-Resources Investigations Report 94-4223. https://pubs.usgs.gov/wri/1994/4223/report.pdf (1995).

  • Subramanian, S. & Balasubramanian, A. Hydrochemical studies of Tiruchendur Coast, Tamilnadu, India. Regional Workshop on Environmental Aspects of Groundwater Development (1994).

  • Sun, X. et al. Analysis and evaluation of the renewability of the deep groundwater in the Huaihe River Basin, China. Environ. Earth Sci. 80, 104 (2021).

    ADS 

    Google Scholar 

  • Sun, Y., Zhou, J., Zho, Y., Zeng, Y. & Chen, Y. Influencing factors of groundwater organic pollution around the Bosten Lake area of Xinjiang, China. E3S Web Conf. 98, 09029 (2019).

    CAS 

    Google Scholar 

  • Sureshjani, M. K., Amanipoor, H. & Battaleb-Looie, S. The effects of industrial wastewater on groundwater quality of the Boroujen aquifer, Southwest Iran. Nat. Resour. Res. 29, 3719–3741 (2020).

    Google Scholar 

  • Sweetkind, D. S., Faunt, C. C. & Hanson, R. T. Construction of 3-D geologic framework and textural models for Cuyama Valley groundwater basin, California. U.S. Geological Survey Scientific Investigations Report 2013-5127. https://pubs.usgs.gov/sir/2013/5127/pdf/sir2013-5127.pdf (2013).

  • Szczucińska, A., Dłużewski, M., Kozłowski, R. & Niedzielski, P. Hydrochemical diversity of a large alluvial aquifer in an arid zone (Draa river, S Morocco). Ecol. Chem. Eng. S 26, 81–100 (2019).

    Google Scholar 

  • Szynkiewicz, A., Medina, M. R., Modelska, M., Monreal, R. & Pratt, L. M. Sulfur isotopic study of sulfate in the aquifer of Costa de Hermosillo (Sonora, Mexico) in relation to upward intrusion of saline groundwater, irrigation pumping and land cultivation. Appl. Geochem. 23, 2539–2558 (2023).

    ADS 

    Google Scholar 

  • Tafreshi, G. M., Nakhaei, M. & Lak, R. Land subsidence risk assessment using GIS fuzzy logic spatial modeling in Varamin aquifer, Iran. GeoJournal 86, 1203–1223 (2019).

    Google Scholar 

  • Tagma, T., Hsissou, Y., Bouchaou, L., Bouragba, L. & Boutaleb, S. Groundwater nitrate pollution in Souss-Massa basin (south-west Morocco). Afr. J. Environ. Sci. Technol. 3, 301–309 (2009).

    CAS 

    Google Scholar 

  • Taheri Zangi, S. & Vaezihir, A. Vulnerability of Shazand Plain subsidence caused by groundwater level reduction using weighting model and its validation analysis using radar interferometry. Iran. J. Ecohydrol. 7, 183–194 (2020).

    Google Scholar 

  • Taheri, K., Missimer, T. M., Amini, V., Bahrami, J. & Omidipour, R. A GIS-expert-based approach for groundwater quality monitoring network design in an alluvial aquifer: a case study and a practical guide. Environ. Monit. Assess. 192, 684 (2020).

    PubMed 

    Google Scholar 

  • Talebi, M. S. & Fatemi, M. Assessment of the quality and quantity of groundwater in Bahadoran plain using neural network methods, geostatistical and multivariate statistical analysis. J. Appl. Res. Water Wastewater 7, 144–151 (2020).

    Google Scholar 

  • Tanachaichoksirikun, P. & Seeboonruang, U. Distributions of groundwater age under climate change of Thailand’s Lower Chao Phraya basin. Water 12, 3474 (2020).

    CAS 

    Google Scholar 

  • Tanaka, T. Groundwater resources, development and management in the Kanto Plain, Japan. https://core.ac.uk/download/pdf/76125416.pdf (2004).

  • Tanigawa, K., Hyodo, M. & Sato, H. Holocene relative sea-level change and rate of sea-level rise from coastal deposits in the Toyooka Basin, western Japan. Holocene 23, 1039–1051 (2013).

    ADS 

    Google Scholar 

  • Taniguchi, M. Estimated recharge rates from groundwater temperatures in the Nara Basin, Japan. Appl. Hydrogeol. 2, 7–14 (1994).

    ADS 

    Google Scholar 

  • Taucare, M. et al. Connectivity of fractures and groundwater flows analyses into the Western Andean Front by means of a topological approach (Aconcagua Basin, Central Chile). Hydrol. J. 28, 2429–2438 (2020).

    ADS 

    Google Scholar 

  • Tauchen, P. et al. Wind/Bighorn River Basin Water Plan Update Groundwater Study Level 1 (2008–2011). Groundwater Determination. Wyoming Water Development Commission Technical Memorandum. https://waterplan.state.wy.us/plan/bighorn/2010/gw-finalrept/gw-finalrept.pdf (2012).

  • Tavassoli, S. & Mohammadi, F. Critically assessment of groundwater quality based on WQI and its vulnerability to saltwater intrusion in a coastal city, Iran. Mod. Adv. Geogr. Environ. Earth Sci. 2, 126–138 (2021).

    Google Scholar 

  • Taweesin, K., Seeboonruang, U. & Saraphirom, P. The influence of climate variability effects on groundwater time series in the lower central plains of Thailand. Water 10, 290 (2018).

    Google Scholar 

  • Taylor, C. B. et al. Sources and flow of north Canterbury plains groundwater, New Zealand. J. Hydrol. 106, 311–340 (1989).

    ADS 
    CAS 

    Google Scholar 

  • Taylor, C. J. & Nelson Jr, H. L. A compilation of provisional karst geospatial data for the Interior Low Plateaus physiographic region, central United States. U.S. Geological Survey Data Series 339. https://pubs.usgs.gov/ds/339/pdf/ds339_web.pdf (2008).

  • Taylor, G. C. & Ghosh, P. K. Artesian water in the Malabar coastal plain of southern Kerala, India. U.S. Geological Survey Water Supply Paper 1608-D. https://pubs.usgs.gov/wsp/1608d/report.pdf (1964).

  • Teng, Y. et al. Risk assessment framework for nitrate contamination in groundwater for regional management. Sci. Total Environ. 697, 134102 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tezangi, M. F. Studying the effects of drought on groundwater aquifers of Zarand, Kerman. Int. J. Pharm. Res. Allied Sci. 5, 437–447 (2016).

    Google Scholar 

  • Thamke, J. N., LeCain, G. D., Ryter, D. W., Sando, R. & Long, A. J. Hydrogeologic framework of the uppermost principal aquifer systems in the Williston and Powder River structural basins, United States and Canada. U.S. Geological Survey Scientific Investigations Report 2014-5047. https://pubs.usgs.gov/sir/2014/5047/pdf/sir2014-5047.pdf (2014).

  • Thiros, S. A., Stolp, B. J., Hadley, H. K. & Steiger, J. I. Hydrology and simulation of ground-water flow in Juab Valley, Juab County, Utah. State of Utah Department of Natural Resources, Division of Water Rights Technical Publication No. 114. https://waterrights.utah.gov/docSys/v920/y920/y920000j.pdf (1996).

  • Thiros, S. A. Hydrogeology of shallow basin-fill deposits in areas of Salt Lake Valley, Salt Lake County, Utah. U.S. Geological Survey Water-Resources Investigations Report 03-4029. https://pubs.usgs.gov/wri/wri034029/pdf/wri034029.pdf (2003).

  • Thomas, H. E. Ground water in Tooele Valley, Tooele County, Utah. State of Utah Department of Natural Resources, Division of Water Rights Technical Publication No. 4. https://waterrights.utah.gov/docSys/v920/w920/w9200083.pdf (1946).

  • Thorleifson, L. H. et al. Hydrogeology and hydrogeochemistry of the Red River Valley/Interlake region of Manitoba. Manitoba Energy and Mines, Minerals Division Report of Activities, 172–185 (1998).

  • Tickell, S. J. Groundwater resources of the Oolloo Dolostone. Department of Infrastructure Planning and Environment, Natural Resources Division Report 17/2002. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.932.9762&rep=rep1&type=pdf (2002).

  • Tillman, F. D., Cordova, J. T., Leake, S. A., Thomas, B. E. & Callegary, J. B. Water availability and use pilot: methods development for a regional assessment of groundwater availability, southwest alluvial basins, Arizona. U.S. Geological Survey Scientific Investigations Report 2011-5071. https://pubs.usgs.gov/sir/2011/5071/sir2011-5071_text.pdf (2011).

  • Tillman, F. D., Garner, B. D. & Truini, M. Preliminary groundwater flow model of the basin-fill aquifers in Detrital, Hualapai, and Sacramento Valleys, Mohave County, northwestern Arizona. U.S. Geological Survey Scientific Investigations Report 2013-5122. http://pubs.usgs.gov/sir/2013/5122/ (2013).

  • Timms, N. E. et al. Sedimentary facies analysis, mineralogy and diagenesis of the Mesozoic aquifers of the central Perth Basin, Western Australia. Mar. Pet. Geol. 60, 54–78 (2015).

    Google Scholar 

  • Tizro, T. A., Voudouris, K. S. & Kamali, M. Comparative study of step drawdown and constant discharge tests to determine the aquifer transmissivity: the Kangavar aquifer case study, Iran. J. Water Resour. Hydraul. Eng. 3, 12–21 (2014).

    Google Scholar 

  • Tokarsky, O. Hydrogeologic profile Alberta-Saskatchewan boundary. Report prepared for the Prairie Provinces Water Board. https://www.ppwb.ca/uploads/media/5c81764eb01c3/ppwb-report-78-no-maps-en.pdf?v1 (1985).

  • Tokarsky, O. Hydrogeologic profile Saskatchewan-Manitoba boundary. Report prepared for the Prairie Provinces Water Board. https://www.ppwb.ca/uploads/media/5c81764f23261/ppwb-report-79-no-maps-en.pdf?v1 (1985).

  • Tomás, R., Lopez-Sanchez, J. M., Delgado, J., Mallorquí Franquet, J. J. & Herrera García, G. in Droughts: Causes, Effects and Predictions (ed. Sánchez, J. M.) 253–276 (Nova Science, 2008).

  • Tomás, R. et al. Mapping ground subsidence induced by aquifer overexploitation using advanced Differential SAR Interferometry: Vega Media of the Segura River (SE Spain) case study. Remote Sens. Environ. 98, 269–283 (2005).

    ADS 

    Google Scholar 

  • Tomozawa, Y., Onodera, S. I. & Saito, M. Estimation of groundwater recharge and salinization in a coastal alluvial plain and Osaka megacity, Japan, using δ18O, δD, and Cl. Geomate J. 16, 153–158 (2019).

    Google Scholar 

  • Torak, L. J. & Painter, J. A. Geostatistical estimation of the bottom altitude and thickness of the Mississippi River Valley alluvial aquifer. U.S. Geological Survey Scientific Investigations Map 3426. https://pubs.er.usgs.gov/publication/sim3426 (2019).

  • Torkamanitombeki, H., Rahnamarad, J. & Saadatkhah, N. Groundwater chemical indices changed due to water-level decline, Minab Plain, Iran. Environ. Earth Sci. 77, 269 (2018).

    ADS 

    Google Scholar 

  • Torres-Martínez, J. A., Mora, A., Knappett, P. S., Ornelas-Soto, N. & Mahlknecht, J. Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model. Water Res. 182, 115962 (2020).

    PubMed 

    Google Scholar 

  • Torres-Martínez, J. A. et al. Estimation of nitrate pollution sources and transformations in groundwater of an intensive livestock-agricultural area (Comarca Lagunera), combining major ions, stable isotopes and MixSIAR model. Environ. Pollut. 269, 115445 (2021).

    PubMed 

    Google Scholar 

  • Torres-Martinez, J. A. et al. Constraining a density-dependent flow model with the transient electromagnetic method in a coastal aquifer in Mexico to assess seawater intrusion. Hydrol. J. 27, 2955–2972 (2019).

    ADS 

    Google Scholar 

  • Torres-Rondon, L., Carrière, S. D., Chalikakis, K. & Valles, V. An integrative geological and geophysical approach to characterize a superficial deltaic aquifer in the Camargue plain, France. C. R. Geosci. 345, 241–250 (2013).

    Google Scholar 

  • Tosaki, Y. et al. Deep incursion of seawater into the Hiroshima Granites during the Holocene transgression: evidence from 36Cl age of saline groundwater in the Hiroshima area, Japan. Geochem. J. 51, 263–275 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Tournoud, M. G., Payraudeau, S., Cernesson, F. & Salles, C. Origins and quantification of nitrogen inputs into a coastal lagoon: application to the Thau lagoon (France). Ecol. Model. 193, 19–33 (2006).

    Google Scholar 

  • Tran, D. A. et al. Groundwater quality evaluation and health risk assessment in coastal lowland areas of the Mekong Delta, Vietnam. Groundw. Sustain. Dev. 15, 100679 (2021).

    Google Scholar 

  • Trapp Jr, H. Hydrology of sand-and-gravel aquifer in central and southern Escambia County, Florida. U.S. Geological Survey Open-File Report 74-218. https://pubs.usgs.gov/of/1974/0218/report.pdf (1973).

  • Trapp Jr, H. & Horn, M. A. Ground water atlas of the United States: Segment 11, Delaware, Maryland, New Jersey, North Carolina, Pennsylvania, Virginia, West Virginia. U.S. Geological Survey Hydrologic Investigations Atlas 730-L. https://pubs.usgs.gov/ha/730l/report.pdf (1997).

  • Treu, F. et al. Intrinsic vulnerability of the Isonzo/Soča high plain aquifer (NE Italy–W Slovenia). J. Maps 13, 799–810 (2017).

    Google Scholar 

  • Truong, P. V. Hydrogeochemistry characteristics and salinity of groundwater in Quaternary sediments in the coastal zone of Ha Tinh province. Vietnam J. Earth Sci. 37, 70–78 (2015).

    Google Scholar 

  • Tucci, P. Use of a three-dimensional model for the analysis of the ground-water flow system in Parker Valley, Arizona and California. U.S. Geological Survey Open-File Report 82-1006. https://pubs.usgs.gov/of/1982/1006/report.pdf (1982).

  • U.S. Geological Survey. National water summary 1984: hydrologic events, selected water-quality trends, and ground-water resources. U.S. Geological Survey Water-Supply Paper 2275. https://pubs.usgs.gov/wsp/2275/report.pdf (1984).

  • Umvoto Africa. The assessment of water availability in the Berg Catchment (WMA 19) by means of Water Resource Related Models. Department of Water Affairs and Forestry report. https://www.dws.gov.za/Documents/Other/WMA/19/Reports/Rep9-Vol5-GW%20Cape%20Flats%20Aquifer.pdf (2008).

  • United States Bureau of Reclamation. Final feasibility-level special study report. Odessa subarea special study. https://www.usbr.gov/pn/programs/eis/odessa/finaleis/final.pdf (2012).

  • University of Greenwich and Gujarat Institute of Desert Ecology. Ecosystem assessment of the coastal plain natural area of Kachchh District: planning for biodiversity and livelihoods into the future. Project presentation. https://gala.gre.ac.uk/id/eprint/16221/1/16221%20BARTLETT_Coastal_Plain_of_Kachchh_2016.pdf (2016).

  • Upson, J. E. & Thomasson, H. G. Geology and water resources of the Santa Ynez river basin, Santa Barbara County, California, Vol. 2. U.S. Geological Survey Water-Supply Report 1107. https://pubs.usgs.gov/wsp/1107/report.pdf (1951).

  • Urresti-Estala, B., Gavilán, P. J., Pérez, I. V. & Cantos, F. C. Assessment of hydrochemical trends in the highly anthropised Guadalhorce River basin (southern Spain) in terms of compliance with the European groundwater directive for 2015. Environ. Sci. Pollut. Res. 23, 15990–16005 (2016).

    CAS 

    Google Scholar 

  • Urrutia, J. et al. Hydrogeology and sustainable future groundwater abstraction from the Agua Verde aquifer in the Atacama Desert, northern Chile. Hydrol. J. 26, 1989–2007 (2018).

    ADS 

    Google Scholar 

  • US Army Corps of Engineers. Water resources assessment of El Salvador. https://www.sam.usace.army.mil/Portals/46/docs/military/engineering/docs/WRA/ElSalvador/El%20Salvador%20WRA%20English.pdf (1998).

  • Uthman, W. & Beck J. Hydrogeology of the Upper Beaverhead Basin near Dillon, Montana. Montana Bureau of Mines and Geology Open-File Report 384. https://dnrc.mt.gov/_docs/water/Hydro_science_data/mbmg_open-file_report_384.pdf (1998).

  • Uugulu, S. & Wanke, H. Estimation of groundwater recharge in savannah aquifers along a precipitation gradient using chloride mass balance method and environmental isotopes, Namibia. Phys. Chem. Earth A/B/C 116, 102844 (2020).

    Google Scholar 

  • Vaccaro, J. J., Hansen, A. J. & Jones, M. A. Hydrogeologic framework of the Puget Sound aquifer system, Washington and British Columbia. U.S. Geological Survey Professional Paper 1424-D. https://pubs.usgs.gov/pp/1424d/report.pdf (1998).

  • Vaccaro, J. J. et al. Groundwater availability of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho. U.S. Geological Survey Professional Paper 1817. https://doi.org/10.3133/pp1817 (2015).

  • Vaezihir, A. & Tabarmayeh, M. Total vulnerability estimation for the Tabriz aquifer (Iran) by combining a new model with DRASTIC. Environ. Earth Sci. 74, 2949–2965 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Valin, Z. C. & McLaughlin, R. J. Locations and data for water wells of the Santa Rosa Valley, Sonoma County, California. U.S. Geological Survey Open File Report 2005-1318. https://pubs.usgs.gov/of/2005/1318/of2005-1318.pdf (2005).

  • van Geldern, R. et al. Pleistocene paleo-groundwater as a pristine fresh water resource in southern Germany–evidence from stable and radiogenic isotopes. Sci. Total Environ. 496, 107–115 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Van Lam, N., Van Hoan, H. & Duc Nhan, D. Investigation into groundwater resources in southern part of the Red River’s Delta Plain, Vietnam by the use of isotopic techniques. Water 11, 2120 (2019).

    Google Scholar 

  • Varma, A. Groundwater resource and governance in Kerala. Status, issues and prospects. Forum for Policy Dialogue on Water Conflicts in India. Kerala Resource Centre report. https://www.soppecom.org/pdf/Groundwater-Resource-and-Governance-in-Kerala.pdf (2017).

  • Varma, S. & Michael, K. Impact of multi-purpose aquifer utilisation on a variable-density groundwater flow system in the Gippsland Basin, Australia. Hydrol. J. 20, 119–134 (2012).

    ADS 

    Google Scholar 

  • Vazquez Sanchez, E., Cortes, A., Jaimes Palomera, R., Fritz, P. & Aravena, R. Hidrogeologia isotopica de los valles de Cuautla y Yautepec, Mexico. Geofís. Int. 28, 245–264 (1989).

    ADS 
    CAS 

    Google Scholar 

  • Vazquez, J. G., Grande, J. A., Barragán, F. J., Ocaña, J. A. & De La Torre, M. L. Nitrate accumulation and other components of the groundwater in relation to cropping system in an aquifer in Southwestern Spain. Water Resour. Manag. 19, 1–22 (2005).

    Google Scholar 

  • Vega-Granillo, E. L., Cirett-Galán, S., De la Parra-Velasco, M. L. & Zavala-Juárez, R. Hidrogeología de Sonora, México. Panorama de la geología de Sonora, México (ed. Calmus, T.) 267–298. Universidad Nacional Autónoma de México, Instituto de Geología, Boletín 118. https://boletin.geologia.unam.mx/index.php/boletin/issue/view/14/12 (2011).

  • Vergnes, J. P. et al. The AquiFR hydrometeorological modelling platform as a tool for improving groundwater resource monitoring over France: evaluation over a 60-year period. Hydrol. Earth Syst. Sci. 24, 633–654 (2020).

    ADS 

    Google Scholar 

  • Vetrimurugan, E., Elango, L. & Rajmohan, N. Sources of contaminants and groundwater quality in the coastal part of a river delta. Int. J. Environ. Sci. Technol. 10, 473–486 (2013).

    CAS 

    Google Scholar 

  • Veve, T. D. & Taggart, B. E. Atlas of Ground-Water Resources in Puerto Rico and the U.S. Virgin Islands. U.S. Geological Survey Water-Resources Investigations Report 94-4198. https://pubs.usgs.gov/wri/1994/4198/report.pdf (1996).

  • Villanueva-Hernández, H., Tovar-Cabañas, R. & Vargas-Castilleja, R. Classification of aquifers in the Mina field, Nuevo Leon, using geographic information systems. Tecnol. Cienc. Agua 10, 96–123 (2019).

    Google Scholar 

  • Villegas, P., Paredes, V., Betancur, T. & Ribeiro, L. Assessing the hydrochemistry of the Urabá Aquifer, Colombia by principal component analysis. J. Geochem. Explor. 134, 120–129 (2013).

    CAS 

    Google Scholar 

  • Virbulis, J., Bethers, U., Saks, T., Sennikovs, J. & Timuhins, A. Hydrogeological model of the Baltic Artesian Basin. Hydrol. J. 21, 845–862 (2013).

    ADS 

    Google Scholar 

  • Vizintin, G., Souvent, P., Veselič, M. & Curk, B. C. Determination of urban groundwater pollution in alluvial aquifer using linked process models considering urban water cycle. J. Hydrol. 377, 261–273 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Vogel, J. C., Talma, A. S., Heaton, T. H. E. & Kronfeld, J. Evaluating the rate of migration of an uranium deposition front within the Uitenhage Aquifer. J. Geochem. Explor. 66, 269–276 (1999).

    CAS 

    Google Scholar 

  • Vroblesky, D. A. & Fleck, W. B. Hydrogeologic Framework of the Coastal Plain of Maryland, Delaware, and the District of Columbia. U.S. Geological Survey Professional Paper 1404-E. https://pubs.usgs.gov/pp/1404e/report.pdf (1991).

  • Wacker, M. A., Cunningham, K. J. & Williams, J. H. Geologic and hydrogeologic frameworks of the Biscayne aquifer in central Miami-Dade County, Florida. U.S. Geological Survey Scientific Investigations Report 2014-5138. https://pubs.usgs.gov/sir/2014/5138/pdf/sir2014-5138.pdf (2014).

  • Wade, S. & Jigmond, M. Groundwater availability model of west Texas Bolsons (Presidio and Redford) Aquifer. Texas Water Development Board report. https://www.twdb.texas.gov/groundwater/models/gam/prbl/PRBL_ModelFinalReport.pdf (2013).

  • Wallace, J. & Lowe, M. Ground-water quality classification for the Principal Basin-fill Aquifer, Salt Lake Valley, Salt Lake County, Utah. Utah Geological Survey Open-File Report 560. https://ugspub.nr.utah.gov/publications/open_file_reports/ofr-560.pdf (2009).

  • Wang, D., Yang, C. & Shao, L. The spatiotemporal evolution of hydrochemical characteristics and groundwater quality assessment in Urumqi, Northwest China. Arab. J. Geosci. 14, 161 (2021).

    CAS 

    Google Scholar 

  • Wang, L. & Iwao, Y. Groundwater characteristics of the Saga Plain, Japan. J. Nepal Geol. Soc. 22, 343–350 (2000).

    CAS 

    Google Scholar 

  • Wang, S. J., Lee, C. H., Yeh, C. F., Choo, Y. F. & Tseng, H. W. Evaluation of climate change impact on groundwater recharge in groundwater regions in Taiwan. Water 13, 1153 (2021).

    Google Scholar 

  • Wang, S. et al. Shallow groundwater dynamics in North China plain. J. Geog. Sci. 19, 175–188 (2009).

    Google Scholar 

  • Washington State Department of Ecology. Puget Sound groundwater toxics loading analysis: direct discharge pathway. Publication No. 10-03-122. https://apps.ecology.wa.gov/publications/documents/1003122.pdf (2010).

  • Water and Marine Resources Division. Tasmanian Aquifer Framework. Groundwater Management Report Series. Report No. GW 2012/02. https://nre.tas.gov.au/Documents/Tasmanian%20Aquifer%20Framework.pdf (2012).

  • Watts, K. R. Hydrogeology and quality of ground water in the upper Arkansas River Basin from Buena Vista to Salida, Colorado, 2000–2003. U.S. Geological Survey Scientific Investigations Report 2005-5179. https://pubs.usgs.gov/sir/2005/5179/pdf/SIR2005-5179.pdf (2005).

  • Wei, M., Allen, D. M., Carmichael, V. & Ronneseth, K. State of understanding of the hydrogeology of the Grand Forks aquifer. Water Stewardship Division, BC Ministry of Environment Report. https://www.grandforks.ca/wp-content/uploads/reports/2010-Hydrogeology-Study-of-Grand-Forks-area.pdf (2010).

  • Weiss, J. S. Geohydrologic units of the coastal lowlands aquifer system, south-central United States. U.S. Geological Survey regional aquifer-system analysis. https://pubs.usgs.gov/pp/1416c/report.pdf (1990).

  • Welch, A. H., Sorey, M. L. & Olmsted, F. H. Hydrothermal system in Southern Grass Valley, Pershing County, Nevada. U.S. Geological Survey Open-File Report 81-915. https://www.osti.gov/servlets/purl/5119283-5mJ8YB/ (1981).

  • Welder, G. E. Geohydrologic framework of the Roswell ground-water basin, Chaves and Eddy Counties, New Mexico. New Mexico State Engineer Technical Report 42. https://www.ose.state.nm.us/Library/TechnicalReports/TechReport-042.pdf (1983).

  • Welder, G. E. Plan of study for the regional aquifer system analysis of the San Juan structural basin, New Mexico, Colorado, Arizona, and Utah. U.S. Geological Survey Water-Resources Investigations Report 85-4294. https://pubs.usgs.gov/wri/1985/4294/report.pdf (1986).

  • Wellman, T. P. Evaluation of groundwater levels in the South Platte River alluvial aquifer, Colorado, 1953–2012, and design of initial well networks for monitoring groundwater levels. U.S. Geological Survey Scientific Investigations Report 2015-5015. https://pubs.usgs.gov/sir/2015/5015/pdf/sir2015-5015.pdf (2015).

  • Welsh, W. D. Spatial and temporal water balance estimates using a GIS. Engineers Australia. https://openresearch-repository.anu.edu.au/bitstream/1885/43108/2/HYDRO2005_bowen2.pdf (2005).

  • Westjohn, D. B. & Weaver, T. L. Hydrogeologic framework of the Michigan Basin regional aquifer system. U.S. Geological Survey Professional Paper 1418. https://pubs.usgs.gov/pp/1418/report.pdf (1998).

  • Whitcomb, H. A. & Lowry, M. E. Ground-water resources and geology of the Wind River Basin area, central Wyoming. U.S. Geological Survey Hydrologic Atlas 270. https://pubs.usgs.gov/ha/270/report.pdf (1968).

  • White, P. A. & Reeves, R. R. The volume of groundwater in New Zealand 1994 to 2001. Statistics New Zealand, Client Report 2002/79. https://docs.niwa.co.nz/library/public/volume-of-groundwater-in-nz-2001%5B1%5D.pdf (2002).

  • White, W. N. Preliminary report on the ground-water supply of Mimbres Valley, New Mexico. U.S. Geological Survey Water Supply Paper 637. https://pubs.usgs.gov/wsp/0637B/report.pdf (1931).

  • Whitehead, E. J. & Lawrence, A. R. The Chalk aquifer of Lincolnshire. British Geological Survey Research Report RR/06/03. http://nora.nerc.ac.uk/id/eprint/3699/1/RR06003.pdf (2006).

  • Whitehead, R. L. Geohydrologic framework of the Snake River Plain regional aquifer system, Idaho and eastern Oregon. U.S. Geological Survey Professional Paper 1408-B. https://pubs.usgs.gov/pp/1408b/report.pdf (1992).

  • Whittlemore, D. O., Macfarlane, P. A. & Wilson, B. B. Water Resources of the Dakota Aquifer in Kansas. Kansas Geological Survey Bulletin 260. http://www.kgs.ku.edu/Publications/Bulletins/260/Bulletin_260_Dakota.pdf (2014).

  • Wildermuth Environmental. Chino Basin Optimum Basin Management Program. State of the Basin Report – 2004. Report prepared for Chino Basin Watermaster. http://www.cbwm.org/docs/engdocs/isob/ISOB_Final_FullVersion.pdf (2005).

  • Wilkes, P. Baseline assessment of groundwater characteristics in the Beetaloo Sub-basin, NT. GISERA Project Order. https://gisera.csiro.au/wp-content/uploads/2018/10/Water-16-Project-Order-1.pdf (2018).

  • Williams, L. J. & Kuniansky, E. L. Revised hydrogeologic framework of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina. U.S. Geological Survey Professional Paper 1807. https://pubs.usgs.gov/pp/1807/pdf/pp1807.pdf (2016).

  • Willmes, M. et al. Mapping of bioavailable strontium isotope ratios in France for archaeological provenance studies. Appl. Geochem. 90, 75–86 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Wilson, D. D. The significance of geology in some current water resource problems, Canterbury Plains, New Zealand. J. Hydrol. (New Zeal.) 12, 103–118 (1973).

    Google Scholar 

  • Wilson, H. D. Ground-water appraisal of Santa Ynez River basin, Santa Barbara County, California, 1945-52. U.S. Geological Survey Water-Supply Paper 1467. https://pubs.usgs.gov/wsp/1467/report.pdf (1959).

  • Wilson, J. E., Brown, S., Schreier, H., Scovill, D. & Zubel, M. Arsenic in groundwater wells in Quaternary deposits in the Lower Fraser Valley of British Columbia. Can. Water Resour. J. 33, 397–412 (2008).

    Google Scholar 

  • Wilson, J. T. Water-quality assessment of the Cambrian-Ordovician aquifer system in the northern Midwest, United States. U.S. Geological Survey Scientific Investigations Report 2011-5229. https://pubs.usgs.gov/sir/2011/5229/pdf/SIR20115229_web.pdf (2012).

  • Winner Jr, M. D. & Coble, R. W. Hydrogeologic framework of the North Carolina Coastal Plain aquifer system. U.S. Geological Survey Open-File Report 87-690. https://pubs.usgs.gov/of/1987/0690/report.pdf (1989).

  • Wolfgang, C. Hydrogeology of the Pilliga sandstone aquifer in the Western Coonamble embayment and its implications for water resource management. PhD thesis, Australia National Univ. (2000).

  • Wood, P. R. Geology and ground-water features of the Butte Valley region, Siskiyou County, California. U.S. Geological Survey Water-Supply Paper 1491. https://pubs.usgs.gov/wsp/1491/report.pdf (1960).

  • Wood, P. R. & Davis, G. H. Ground-water conditions in the Avenal-McKittrick Area Kings and Kern Counties California. U.S. Geological Survey Water-Supply Paper 1457. https://pubs.usgs.gov/wsp/1457/report.pdf (1959).

  • Woodman, N. D., Burgess, W. G., Ahmed, K. M. & Zahid, A. A partially coupled hydro-mechanical analysis of the Bengal Aquifer System under hydrological loading. Hydrol. Earth Syst. Sci. 23, 2461–2479 (2019).

    ADS 

    Google Scholar 

  • Woodward, D. G., Gannett, M. W. & Vaccaro, J. J. Hydrogeologic framework of the Willamette Lowland aquifer system, Oregon and Washington. U.S. Geological Survey Professional Paper 1424-B. https://pubs.usgs.gov/pp/1424b/report.pdf (1998).

  • Woolfenden, L. R. & Nishikawa, T. Simulation of groundwater and surface-water resources of the Santa Rosa Plain watershed, Sonoma County, California. U.S. Geological Survey Scientific Investigations Report 2014-5052. https://pubs.usgs.gov/sir/2014/5052/pdf/sir2014-5052.pdf (2014).

  • Worts, G. F. & Thomasson, H. G. Geology and ground-water resources of the Santa Maria Valley area, California. U.S. Geological Survey Water-Supply Paper 1000. https://pubs.usgs.gov/wsp/1000/report.pdf (1951).

  • Wright, P. R. Hydrogeology and water quality in the Snake River alluvial aquifer at Jackson Hole Airport, Jackson, Wyoming, water years 2011 and 2012. U.S. Geological Survey Scientific Investigations Report 2013-5184. https://pubs.usgs.gov/sir/2013/5184/pdf/sir2013-5184.pdf (2013).

  • Wurl, J. & Imaz-Lamadrid, M. A. Coupled surface water and groundwater model to design managed aquifer recharge for the valley of Santo Domingo, BCS, Mexico. Sustain. Water Resour. Manag. 4, 361–369 (2018).

    Google Scholar 

  • Xiao, Y. et al. Hydrogeochemical constraints on groundwater resource sustainable development in the arid Golmud alluvial fan plain on Tibetan plateau. Environ. Earth Sci. 80, 750 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Xu, N., Gong, J. & Yang, G. Using environmental isotopes along with major hydro-geochemical compositions to assess deep groundwater formation and evolution in eastern coastal China. J. Contam. Hydrol. 208, 1–9 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, Y. S., Shen, S. L., Ma, L., Sun, W. J. & Yin, Z. Y. Evaluation of the blocking effect of retaining walls on groundwater seepage in aquifers with different insertion depths. Eng. Geol. 183, 254–264 (2014).

    Google Scholar 

  • Xue, Z., Du, P., Li, J. & Su, H. Sparse graph regularization for robust crop mapping using hyperspectral remotely sensed imagery with very few in situ data. ISPRS J. Photogramm. Remote Sens. 124, 1–15 (2017).

    ADS 

    Google Scholar 

  • Yamamoto, S. The groundwater hydrology of river valley (2) on the groundwater of Kinokawa valley. Geogr. Rev. Jpn. 24, 8–16 (1951).

    Google Scholar 

  • Yang, W. Q., Shen, L., Xiao, H. & Wang, Y. Z. Impact of shallow groundwater quality evolution in Kunming Urban by human activities. Adv. Mater. Res. 788, 302–306 (2013).

    Google Scholar 

  • Yangouliba, G. I. et al. Modelling past and future land use and land cover dynamics in the Nakambe River Basin, West Africa. Model. Earth Syst. Environ. 9, 1651–1667 (2022).

    Google Scholar 

  • Yazdi, Z. & Niroumand, H. Assessing land subsidence in Qazvin plain caused by groundwater level drop, using finite elements and finite difference methods. GeoTerrace-2020-043. https://eage.in.ua/wp-content/uploads/2020/12/GeoTerrace-2020-043.pdf (2020).

  • Yeh, H. F. Spatiotemporal variation of the meteorological and groundwater droughts in central Taiwan. Front. Water 3, 636792 (2021).

    Google Scholar 

  • Yeh, H. F., Lin, H. I., Lee, C. H., Hsu, K. C. & Wu, C. S. Identifying seasonal groundwater recharge using environmental stable isotopes. Water 6, 2849–2861 (2014).

    ADS 

    Google Scholar 

  • Yoneda, M. et al. Groundwater deterioration caused by induced recharge: field survey and verification of the deterioration mechanism by stochastic numerical simulation. Water Air Soil Pollut. 127, 125–156 (2001).

    ADS 
    CAS 

    Google Scholar 

  • Yonesi, H. et al. Evaluating groundwater quality in Zayandehrood southern sub-basin aquifers. Desert Ecosyst. Eng. J. 9, 103–115 (2020).

    Google Scholar 

  • Yoosefdoo, I. & Khashei Siuki, A. Determine the vulnerability of the aquifer using the standard drastic and data-based methods (case study: Kochisfahan Aquifer). Iran. J. Remote Sens. GIS 9, 99–116 (2018).

    Google Scholar 

  • Yoshioka, Y. et al. Multiple‐indicator study of the response of groundwater recharge sources to highly turbid river water after a landslide in the Tedori River alluvial fan, Japan. Hydrol. Process. 34, 3539–3554 (2020).

    ADS 

    Google Scholar 

  • Yoshioka, Y. & Yoshioka, H. Spatiotemporal variability of hydrogen stable isotopes at a local scale in shallow groundwater during the warm season in Tottori Prefecture, Japan. Hydrol. Res. Lett. 16, 25–31 (2022).

    Google Scholar 

  • Young, H. L. Hydrogeology of the Cambrian-Ordovician aquifer system in the northern Midwest, United States. U.S. Geological Survey Professional Paper 1405-B. https://pubs.usgs.gov/pp/1405b/report.pdf (1992).

  • Young, H. W. Reconnaissance of ground-water resources in the Mountain Home plateau area, southwest Idaho. U.S. Geological Survey Water-Resources Investigations Report 77-108. https://pubs.usgs.gov/wri/1977/0108/report.pdf (1977).

  • Young, R. A. & Carpenter, C. H. Ground-water conditions and storage in the Central Sevier Valley, Utah. U.S. Geological Survey Water-Supply Paper 1787. https://pubs.usgs.gov/wsp/1787/report.pdf (1965).

  • Yu, H. L. & Chu, H. J. Recharge signal identification based on groundwater level observations. Environ. Monit. Assess. 184, 5971–5982 (2012).

    PubMed 

    Google Scholar 

  • Yu, H. L. & Chu, H. J. Understanding space–time patterns of groundwater system by empirical orthogonal functions: a case study in the Choshui River alluvial fan, Taiwan. J. Hydrol. 381, 239–247 (2010).

    ADS 

    Google Scholar 

  • Yustres, Á., Navarro, V., Asensio, L., Candel, M. & García, B. Groundwater resources in the Upper Guadiana Basin (Spain): a regional modelling analysis. Hydrol. J. 21, 1129 (2013).

    ADS 

    Google Scholar 

  • Zandi, R., Ghahraman, K. & Asadi, Z. Monitoring the land subsidence and its associated landforms using remote sensing techniques in Feyzabad Plain (north-east Iran). J. Hydrosci. Environ. 3, 43–51 (2019).

    Google Scholar 

  • Zare, M. & Koch, M. Computation of the irrigation water demand in the Miandarband plain, Iran, using FAO-56-and satellite-estimated crop coefficients. Interdiscip. Res. Rev. 12, 15–25 (2017).

    Google Scholar 

  • Zarour, H., Aitchison-Earl, P., Scott, M., Peaver, L. & De Silva, J. Current state of the groundwater resource in the Orari-Temuka-Opihi-Pareora area. Environment Canterbury Regional Council Report No. R16/41. https://api.ecan.govt.nz/TrimPublicAPI/documents/download/2964277 (2018).

  • Zaryab, A., Nassery, H. R. & Alijani, F. Identifying sources of groundwater salinity and major hydrogeochemical processes in the Lower Kabul Basin aquifer, Afghanistan. Environ. Sci. Process. Impacts 23, 1589–1599 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Zeng, Y., Zhou, Y., Zhou, J., Jia, R. & Wu, J. Distribution and enrichment factors of high-arsenic groundwater in Inland Arid area of PR China: a case study of the Shihezi area, Xinjiang. Expos. Health 10, 1–13 (2018).

    CAS 

    Google Scholar 

  • Zhang, B. et al. The renewability and quality of shallow groundwater in Sanjiang and Songnen Plain, Northeast China. J. Integr. Agric. 16, 229–238 (2017).

    CAS 

    Google Scholar 

  • Zhang, G., Deng, W., Yang, Y. S. & Salama, R. B. Evolution study of a regional groundwater system using hydrochemistry and stable isotopes in Songnen Plain, northeast China. Hydrol. Process. 21, 1055–1065 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Zhang, H., Xu, Y., Cheng, S., Li, Q. & Yu, H. Application of the dual-isotope approach and Bayesian isotope mixing model to identify nitrate in groundwater of a multiple land-use area in Chengdu Plain, China. Sci. Total Environ. 717, 137134 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, H., Yang, R., Wang, Y. & Ye, R. The evaluation and prediction of agriculture-related nitrate contamination in groundwater in Chengdu Plain, southwestern China. Hydrol. J. 27, 785–799 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Zhang, L., Stauffacher, M., Walker, G. R. & Dyce, P. Recharge estimation in the Liverpool Plains (NSW) for input groundwater models. CSIRO Technical Report 10/97 (1997).

  • Zhang, Q. et al. Predicting the risk of arsenic contaminated groundwater in Shanxi Province, Northern China. Environ. Pollut. 165, 118–123 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, W. et al. Using noble gases to trace groundwater evolution and assess helium accumulation in Weihe Basin, central China. Geochim. Cosmochim. Acta 251, 229–246 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Zhang, Y., Gable, C. W., Zyvoloski, G. A. & Walter, L. M. Hydrogeochemistry and gas compositions of the Uinta Basin: A regional-scale overview. AAPG Bull. 93, 1087–1118 (2009).

    CAS 

    Google Scholar 

  • Zhang, Y. et al. Land subsidence and uplift due to long-term groundwater extraction and artificial recharge in Shanghai, China. Hydrol. J. 23, 1851–1866 (2015).

    ADS 

    Google Scholar 

  • Zhen, L. & Martin, P. Geohydrology, simulation of regional groundwater flow, and assessment of water-management strategies, Twentynine Palms area, California. U.S. Geological Survey Scientific Investigations Report 2010-5249. https://pubs.usgs.gov/sir/2010/5249/pdf/sir20105249.pdf (2011).

  • Zhong, Y. et al. Groundwater depletion in the West Liaohe River Basin, China and its implications revealed by GRACE and in situ measurements. Remote Sens. 10, 493 (2018).

    ADS 

    Google Scholar 

  • Zhou, J., Hu, B. X., Cheng, G., Wang, G. & Li, X. Development of a three‐dimensional watershed modelling system for water cycle in the middle part of the Heihe rivershed, in the west of China. Hydrol. Process. 25, 1964–1978 (2011).

    ADS 

    Google Scholar 

  • Zhou, Y., Wang, Y., Li, Y., Zwahlen, F. & Boillat, J. Hydrogeochemical characteristics of central Jianghan Plain, China. Environ. Earth Sci. 68, 765–778 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Zhou, Z. & Zhong, J. Role of atmospheric temperature and seismic activity in spring water hydrogeochemistry in Urumqi, China. Int. J. Environ. Res. Public Health 19, 12004 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, G. F., Li, Z. Z., Su, Y. H., Ma, J. Z. & Zhang, Y. Y. Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minqin Basin, Northwest China. J. Hydrol. 333, 239–251 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Zulfic, D., Harrington, N. & Evans, S. Uley Basin groundwater modelling project, volume 2: groundwater flow model. DWLBC Report 2007/04, Department of Water, Land and Biodiversity Conservation. https://www.waterconnect.sa.gov.au/Content/Publications/DEW/ki_dwlbc_report_2007_04.pdf (2006).

  • GebreEgziabher, M., Jasechko, S. & Perrone, D. Widespread and increased drilling of wells into fossil aquifers in the USA. Nat. Commun. 13, 2129 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taher, M. R., Chornack, M. P. & Mack, T. J. Groundwater levels in the Kabul Basin, Afghanistan, 2004–2013. U.S. Geological Survey Open-File Report 2013-1296. https://doi.org/10.3133/ofr20131296 (2014).

  • Gong, H. et al. Long-term groundwater storage changes and land subsidence development in the North China Plain (1971–2015). Hydrol. J. 26, 1417–1427 (2018).

    ADS 

    Google Scholar 

  • Winckel, A., Ollagnier, S. & Gabillard, S. Managing groundwater resources using a national reference database: the French ADES concept. SN Appl. Sci. 4, 217 (2022).

    Google Scholar 

  • Ascott, M. J. et al. In situ observations and lumped parameter model reconstructions reveal intra‐annual to multidecadal variability in groundwater levels in sub‐Saharan Africa. Water Resour. Res. 56, e2020WR028056 (2020).

    ADS 

    Google Scholar 

  • Tao, S. et al. Changes in China’s water resources in the early 21st century. Front. Ecol. Environ. 18, 188–193 (2020).

    Google Scholar 

  • Adamson, J. K. et al. Significance of river infiltration to the Port-Au-Prince metropolitan region: a case study of two alluvial aquifers in Haiti. Hydrol. J. 30, 1367–1386 (2022).

    ADS 

    Google Scholar 

  • Vongphachanh, S., Gupta, A. D., Milne-Home, W., Ball, J. E. & Pavelic, P. Hydrogeological reconnaissance of Sukhuma District, Champasak Province, Southern Laos. J. Hydrol. (New Zeal.) 56, 79–96 (2017).

    Google Scholar 

  • Fallatah, O. A. Groundwater quality patterns and spatiotemporal change in depletion in the regions of the Arabian shield and Arabian shelf. Arab. J. Sci. Eng. 45, 341–350 (2020).

    CAS 

    Google Scholar 

  • Hsu, Y. J. et al. Assessing seasonal and interannual water storage variations in Taiwan using geodetic and hydrological data. Earth Planet. Sci. Lett. 550, 116532 (2020).

    CAS 

    Google Scholar 

  • Taylor, S. J. & Letham, B. Forecasting at scale. Am. Stat. 72, 37–45 (2018).

    MathSciNet 

    Google Scholar 

  • Friedman, J. H. & Stuetzle, W. Projection pursuit regression. J. Am. Stat. Assoc. 76, 817–823 (1981).

    MathSciNet 

    Google Scholar 

  • Theil, H. A rank-invariant method of linear and polynomial regression analysis. Indag. Math. 12, 386–392 (1950).

    MathSciNet 

    Google Scholar 

  • Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    MathSciNet 

    Google Scholar 

  • Holland, P. W. & Welsch, R. E. Robust regression using iteratively reweighted least-squares. Commun. Stat. Theory Methods 6, 813–827 (1977).

    Google Scholar 

  • Kirchner, J. W. Quantifying new water fractions and transit time distributions using ensemble hydrograph separation: theory and benchmark test. Hydrol. Earth Syst. Sci. 23, 303–349 (2019).

    ADS 

    Google Scholar 

  • Kirchner, J. W. & Knapp, J. L. A. Technical note: Calculation scripts for ensemble hydrograph separation. Hydrol. Earth Syst. Sci. 24, 5539–5558 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Fisher, M. & Bolles, R. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981).

    MathSciNet 

    Google Scholar 

  • Önöz, B. & Bayazit, M. Block bootstrap for Mann–Kendall trend test of serially dependent data. Hydrol. Process. 26, 3552–3560 (2012).

    ADS 

    Google Scholar 

  • Shamsudduha, M. & Taylor, R. G. Groundwater storage dynamics in the world’s large aquifer systems from GRACE: uncertainty and role of extreme precipitation. Earth Syst. Dyn. 11, 755–774 (2020).

    ADS 

    Google Scholar 

  • Landerer, F. W. & Swenson, S. C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 48, W04531 (2012).

    ADS 

    Google Scholar 

  • Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).

    ADS 

    Google Scholar 

  • Wiese, D. N., Landerer, F. W. & Watkins, M. M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour. Res. 52, 7490–7502 (2016).

    ADS 

    Google Scholar 

  • Biancale, R. et al. 3 Years of Geoid Variations from GRACE and LAGEOS Data at 10-day Intervals from July 2002 to March 2005. CNES/GRGS data product (2006).

  • de Graaf, I. D., Sutanudjaja, E. H., Van Beek, L. P. H. & Bierkens, M. F. P. A high-resolution global-scale groundwater model. Hydrol. Earth Syst. Sci. 19, 823–837 (2015).

    ADS 

    Google Scholar 

  • Duran-Llacer, I. et al. Lessons to be learned: groundwater depletion in Chile’s Ligua and Petorca watersheds through an Interdisciplinary approach. Water 12, 2446 (2020).

    Google Scholar 

  • Narvaez-Montoya, C. et al. Predicting adverse scenarios for a transboundary coastal aquifer system in the Atacama Desert (Peru/Chile). Sci. Total Environ. 806, 150386 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Oiro, S., Comte, J. C., Soulsby, C., MacDonald, A. & Mwakamba, C. Depletion of groundwater resources under rapid urbanisation in Africa: recent and future trends in the Nairobi Aquifer System, Kenya. Hydrol. J. 28, 2635–2656 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Castellazzi, P., Garfias, J. & Martel, R. Assessing the efficiency of mitigation measures to reduce groundwater depletion and related land subsidence in Querétaro (Central Mexico) from decadal InSAR observations. Int. J. Appl. Earth Obs. Geoinf. 105, 102632 (2021).

    Google Scholar 

  • Nguyen, M. et al. Assessment of long-term ground subsidence and groundwater depletion in Hanoi, Vietnam. Eng. Geol. 299, 106555 (2022).

    Google Scholar 

  • Bui, L. K. et al. Recent land deformation detected by Sentinel-1A InSAR data (2016–2020) over Hanoi, Vietnam, and the relationship with groundwater level change. GISci. Remote Sens. 58, 161–179 (2021).

    Google Scholar 

  • Moshfika, M., Biswas, S. & Mondal, M. S. Assessing groundwater level declination in Dhaka city and identifying adaptation options for sustainable water supply. Sustainability 14, 1518 (2022).

    Google Scholar 

  • Sohail, M. T. et al. Groundwater budgeting of Nari and Gaj formations and groundwater mapping of Karachi, Pakistan. Appl. Water Sci. 12, 267 (2022).

    ADS 
    CAS 

    Google Scholar 

  • Dehghani, F., Mohammadi, Z. & Zare, M. Assessment of groundwater depletion in a heterogeneous aquifer: historical reconnaissance and current situation. Environ. Earth Sci. 80, 582 (2021).

    ADS 

    Google Scholar 

  • Gautam, A., Rai, S. C. & Rai, S. P. Impact of anthropogenic activities on the alluvial aquifers of north-east Punjab, India. Environ. Monit. Assess. 192, 527 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Sajjad, M. M. et al. Impact of climate and land-use change on groundwater resources, study of Faisalabad district, Pakistan. Atmosphere 13, 1097 (2022).

    ADS 

    Google Scholar 

  • Ouassanouan, Y. et al. Multi-decadal analysis of water resources and agricultural change in a Mediterranean semiarid irrigated piedmont under water scarcity and human interaction. Sci. Total Environ. 834, 155328 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Goode, D. J., Senior, L. A., Subah, A. & Jaber, A. Groundwater-level trends and forecasts, and salinity trends, in the Azraq, Dead Sea, Hammad, Jordan Side Valleys, Yarmouk, and Zarqa groundwater basins, Jordan. U.S. Geological Survey Open-File Report 2013-1061. http://pubs.usgs.gov/of/2013/1061/ (2013).

  • Naeem, U. A. et al. Impact of urbanization on groundwater levels in Rawalpindi City, Pakistan. Pure Appl. Geophys. 178, 491–500 (2021).

    ADS 

    Google Scholar 

  • Snoussi, M., Jerbi, H. & Tarhouni, J. Integrated groundwater flow modeling for managing a complex alluvial aquifer case of study Mio-Plio-Quaternary Plain of Kairouan (Central Tunisia). Water 14, 668 (2022).

    Google Scholar 

  • Zghibi, A. et al. Implications of groundwater development and seawater intrusion for sustainability of a Mediterranean coastal aquifer in Tunisia. Environ. Monit. Assess. 191, 696 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Cotterman, K. A., Kendall, A. D., Basso, B. & Hyndman, D. W. Groundwater depletion and climate change: future prospects of crop production in the Central High Plains Aquifer. Clim. Change 146, 187–200 (2018).

    ADS 

    Google Scholar 

  • Orhan, O. Monitoring of land subsidence due to excessive groundwater extraction using small baseline subset technique in Konya, Turkey. Environ. Monit. Assess. 193, 174 (2021).

    PubMed 

    Google Scholar 

  • Xia, J. et al. Evaluating the dynamics of groundwater depletion for an arid land in the Tarim Basin, China. Water 11, 186 (2019).

    Google Scholar 

  • Custodio, E. et al. Groundwater mining: benefits, problems and consequences in Spain. Sustain. Water Resour. Manag. 3, 213–226 (2017).

    Google Scholar 

  • Taher, T. M. Groundwater abstraction management in Sana’a Basin, Yemen: a local community approach. Hydrol. J. 24, 1593–1605 (2016).

    ADS 

    Google Scholar 

  • Delinom, R. M. in Groundwater and Subsurface Environments (ed. Taniguchi, M.) 113–125 (Springer, 2011).

  • Taufiq, A. et al. Impact of excessive groundwater pumping on rejuvenation processes in the Bandung basin (Indonesia) as determined by hydrogeochemistry and modeling. Hydrol. J. 26, 1263–1279 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Zaryab, A., Nassery, H. R. & Alijani, F. The effects of urbanization on the groundwater system of the Kabul shallow aquifers, Afghanistan. Hydrol. J. 30, 429–443 (2022).

    ADS 

    Google Scholar 

  • Carrillo, M., Gomez, Y. A., Valle, S. & Prado, J. V. Behavior of groundwater levels in Texcoco Aquifer (1507) when they are lowered by excessive pumping from 1968 through 2014. 2016 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers. https://elibrary.asabe.org/abstract.asp?aid=47273 (2016).

  • Ojha, C., Werth, S. & Shirzaei, M. Groundwater loss and aquifer system compaction in San Joaquin Valley during 2012–2015 drought. J. Geophys. Res. Solid Earth 124, 3127–3143 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noori, R. et al. Anthropogenic depletion of Iran’s aquifers. Proc. Natl Acad. Sci. 118, e2024221118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ashraf, S., Nazemi, A. & AghaKouchak, A. Anthropogenic drought dominates groundwater depletion in Iran. Sci. Rep. 11, 9135 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saowiang, K. & Giao, P. H. Numerical analysis of subsurface deformation induced by groundwater level changes in the Bangkok aquifer system. Acta Geotech. 16, 1265–1279 (2021).

    Google Scholar 

  • Shi, W. et al. Spatial-temporal evolution of land subsidence and rebound over Xi’an in western China revealed by SBAS-InSAR analysis. Remote Sens. 12, 3756 (2020).

    ADS 

    Google Scholar 

  • Sartirana, D. et al. Data-driven decision management of urban underground infrastructure through groundwater-level time-series cluster analysis: the case of Milan (Italy). Hydrol. J. 30, 1157–1177 (2022).

    ADS 

    Google Scholar 

  • Houspanossian, J. et al. Agricultural expansion raises groundwater and increases flooding in the South American plains. Science 380, 1344–1348 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Galanter, A. E. & Curry, L. T. S. Estimated 2016 groundwater level and drawdown from predevelopment to 2016 in the Santa Fe Group aquifer system in the Albuquerque area, central New Mexico. U.S. Geological Survey Scientific Investigations Map 3433. https://doi.org/10.3133/sim3433 (2019).

  • Hao, Y., Xie, Y., Ma, J. & Zhang, W. The critical role of local policy effects in arid watershed groundwater resources sustainability: a case study in the Minqin oasis, China. Sci. Total Environ. 601, 1084–1096 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • Furi, W., Razack, M., Haile, T., Abiye, T. A. & Legesse, D. The hydrogeology of Adama-Wonji basin and assessment of groundwater level changes in Wonji wetland, Main Ethiopian Rift: results from 2D tomography and electrical sounding methods. Environ. Earth Sci. 62, 1323–1335 (2011).

    ADS 

    Google Scholar 

  • Özel, N., Bozdağ, Ş. & Baba, A. Effect of irrigation system on groundwater resources in Harran Plain (Southeastern Turkey). J. Food Sci. Eng. 9, 45–51 (2023).

    Google Scholar 

  • Duran-Llacer, I. et al. A new method to map groundwater-dependent ecosystem zones in semi-arid environments: a case study in Chile. Sci. Total Environ. 816, 151528 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pino, E. et al. Factors affecting depletion and pollution by marine intrusion in the La Yarada’s coastal aquifer, Tacna, Peru. Tecnol. Cienc. Agua 10, 177–213 (2019).

    Google Scholar 

  • Vu, T. T. & Tran, N. V. T. Assessment of urbanization impact on groundwater resources in Hanoi, Vietnam. J. Environ. Manag. 227, 107–116 (2018).

    Google Scholar 

  • Roy, S. K. & Zahid, A. Assessment of declining groundwater levels due to excessive pumping in the Dhaka District of Bangladesh. Environ. Earth Sci. 80, 333 (2021).

    ADS 

    Google Scholar 

  • Taher, T., Bruns, B., Bamaga, O., Al-Weshali, A. & Van Steenbergen, F. Local groundwater governance in Yemen: building on traditions and enabling communities to craft new rules. Hydrol. J. 20, 1177–1188 (2012).

    ADS 

    Google Scholar 

  • Rybakov, V. Water crisis in Yemen: speculations, realities and mitigation actions. https://static1.squarespace.com/static/5eb18d627d53aa0e85b60c65/t/5eda46ed1c956a6bc14ae36c/1591363321836/Report-victor.pdf (2012).

  • Abidin, H. Z. et al. Land subsidence and groundwater extraction in Bandung Basin, Indonesia. IAHS publication 329, 145–156 (2009).

  • Livoreil, B. et al. Systematic searching for environmental evidence using multiple tools and sources. Environ. Evid. 6, 23 (2017).

    Google Scholar 

  • Malakar, P. et al. Three decades of depth-dependent groundwater response to climate variability and human regime in the transboundary Indus-Ganges-Brahmaputra-Meghna mega river basin aquifers. Adv. Water Res. 149, 103856 (2021).

    Google Scholar 

  • Taylor, C. J. & Alley, W. M. Ground-water-level monitoring and the importance of long-term water-level data. U.S. Geological Survey Circular 1217 (2001).

  • Russo, T. A. & Lall, U. Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci. 10, 105–108 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem. Geophys. Geosyst. 13, Q12004 (2012).

    ADS 

    Google Scholar 

  • Hora, T., Srinivasan, V. & Basu, N. B. The groundwater recovery paradox in South India. Geophys. Res. Lett. 46, 9602–9611 (2019).

    ADS 

    Google Scholar 

  • Patle, G. T. et al. Time series analysis of groundwater levels and projection of future trend. J. Geol. Soc. India 85, 232–242 (2015).

    Google Scholar 

  • Shamsudduha, M., Taylor, R. G., Ahmed, K. M. & Zahid, A. The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh. Hydrol. J. 19, 901–916 (2011).

    ADS 

    Google Scholar 

  • Rushton, K. R., Zaman, M. A. & Mehedi Hasan, M. Sustainable abstraction due to unconfined conditions in multi-layered aquifers: examples from northwest Bangladesh. Groundw. Sustain. Dev. 20, 100901 (2023).

    Google Scholar 

  • MacDonald, A. M. et al. Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nat. Geosci. 9, 762–766 (2016).

    ADS 
    CAS 

    Google Scholar 

  • MacAllister, D. J., Krishan, G., Basharat, M., Cuba, D. & MacDonald, A. M. A century of groundwater accumulation in Pakistan and northwest India. Nat. Geosci. 15, 390396 (2022).

    ADS 

    Google Scholar 

  • Perrone, D. & Jasechko, S. Dry groundwater wells in the western United States. Environ. Res. Lett. 12, 104002 (2017).

    ADS 

    Google Scholar 

  • Perrone, D. & Jasechko, S. Deeper well drilling an unsustainable stopgap to groundwater depletion. Nat. Sustain. 2, 773–782 (2019).

    Google Scholar 

  • Jasechko, S. & Perrone, D. Hydraulic fracturing near domestic groundwater wells. Proc. Natl Acad. Sci. 114, 13138–13143 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mukherji, A., Rawat, S. & Shah, T. Major insights from India’s minor irrigation censuses: 1986-87 to 2006-07. Econ. Political Wkly. 48, 115–124 (2013).

    Google Scholar 

  • Laghari, A. N., Vanham, D. & Rauch, W. The Indus basin in the framework of current and future water resources management. Hydrol. Earth Syst. Sci. 16, 1063–1083 (2012).

    ADS 

    Google Scholar 

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Karger, D. N., Wilson, A. M., Mahony, C. & Zimmermann, N. E. Global daily 1 km land surface precipitation based on cloud cover-informed downscaling. Sci. Data 8, 307 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *