Strange India All Strange Things About India and world


  • Luttinger, J. M. Theory of the de Haas-van Alphen effect for a system of interacting fermions. Phys. Rev. 121, 1251–1258 (1961).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • Engelsberg, S. & Simpson, G. Influence of electron-phonon interactions on the de Haas-van Alphen effect. Phys. Rev. B 2, 1657–1665 (1970).

    Article 
    ADS 

    Google Scholar 

  • Wasserman, A., Springford, M. & Hewson, A. Theory of the de Haas-van Alphen effect for heavy-fermion alloys. J. Phys. Condens. Matter 1, 2669–2676 (1989).

    Article 
    ADS 

    Google Scholar 

  • Taillefer, L., Newbury, R., Lonzarich, G., Fisk, Z. & Smith, J. Direct observation of heavy quasiparticles in UPt3 via the dHvA effect. J. Mag. Mag. Mater. 63–64, 372–376 (1987).

    Article 
    ADS 

    Google Scholar 

  • van Delft, M. R. et al. Electron-hole tunneling revealed by quantum oscillations in the nodal-line semimetal HfSiS. Phys. Rev. Lett. 121, 256602 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Müller, C. S. A. et al. Determination of the Fermi surface and field-induced quasiparticle tunneling around the Dirac nodal loop in ZrSiS. Phys. Rev. Res. 2, 023217 (2020).

    Article 
    ADS 

    Google Scholar 

  • Ding, L. et al. Quantum oscillations, magnetic breakdown and thermal Hall effect in Co3Sn2S2. J. Phys. D Appl. Phys. 54, 454003 (2021).

    Article 
    CAS 

    Google Scholar 

  • Pavlosiuk, O., Swatek, P. W., Wang, J.-P., Wiśniewski, P. & Kaczorowski, D. Giant magnetoresistance, Fermi-surface topology, Shoenberg effect, and vanishing quantum oscillations in the type-II Dirac semimetal candidates MoSi2 and WSi2. Phys. Rev. B 105, 075141 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Broyles, C. et al. Revealing a 3D Fermi surface and electron-hole tunneling in UTe2 with quantum oscillations. Preprint at https://arxiv.org/abs/2303.09050 (2023).

  • Reiss, P. et al. Quenched nematic criticality and two superconducting domes in an iron-based superconductor. Nat. Phys. 16, 89–94 (2020).

    Article 
    CAS 

    Google Scholar 

  • Sebastian, S. E. & Proust, C. Quantum oscillations in hole-doped cuprates. Annu. Rev. Condens. Matter Phys. 6, 411–430 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McMullan, G. J. et al. The Fermi surface and f-valence electron count of UPt3. New J. Phys. 10, 053029 (2008).

    Article 
    ADS 

    Google Scholar 

  • Shishido, H. et al. Anomalous change in the de Haas–van Alphen oscillations of CeCoIn5 at ultralow temperatures. Phys. Rev. Lett. 120, 177201 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dalgaard, K. J., Lei, S., Wiedmann, S., Bremholm, M. & Schoop, L. M. Anomalous Shubnikov-de Haas quantum oscillations in rare-earth tritelluride NdTe3. Phys. Rev. B 102, 245109 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sunko, V. et al. Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking. Nature 549, 492–496 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Phinney, I. et al. Strong interminivalley scattering in twisted bilayer graphene revealed by high-temperature magneto-oscillations. Phys. Rev. Lett. 127, 056802 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Broyles, C. et al. Effect of the interlayer ordering on the Fermi surface of Kagome superconductor CsV3Sb5 revealed by quantum oscillations. Phys. Rev. Lett. 129, 157001 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Landau, L. Diamagnetismus der Metalle. Z. Phys. 64, 629–637 (1930).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • de Haas, W. J. & van Alphen, P. M. The dependence of the susceptibility of diamagnetic metals upon the field. Proc. Netherlands Roy. Acad. Sci. 33, 1106–1118 (1930).

    MATH 

    Google Scholar 

  • Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).

  • Peierls, R. Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys. 80, 763–791 (1933).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Onsager, L. Interpretation of the de Haas-van Alphen effect. Lond. Edinb. Dublin Philos. Mag. J. Sci. 43, 1006–1008 (1952).

    Article 

    Google Scholar 

  • Lifshitz, I. M. & Kosevich, A. Theory of magnetic susceptibility in metals at low temperatures. Sov. Phys. JETP 2, 636–645 (1956).

    Google Scholar 

  • Kartsovnik, M. V. High magnetic fields: a tool for studying electronic properties of layered organic metals. Chem. Rev. 104, 5737–5781 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Julian, S. R. in Strongly Correlated Systems (eds Avella, A. & Mancini, F.) 137–172 (Springer, 2015).

  • Tan, B. S. et al. Unconventional Fermi surface in an insulating state. Science 349, 287–290 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Han, Z., Li, T., Zhang, L., Sullivan, G. & Du, R.-R. Anomalous conductance oscillations in the hybridization gap of InAs/GaSb quantum wells. Phys. Rev. Lett. 123, 126803 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Knolle, J. & Cooper, N. R. Quantum oscillations without a Fermi surface and the anomalous de Haas–van Alphen effect. Phys. Rev. Lett. 115, 146401 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Sodemann, I., Chowdhury, D. & Senthil, T. Quantum oscillations in insulators with neutral Fermi surfaces. Phys. Rev. B 97, 045152 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dingle, R. B. Some magnetic properties of metals II. The influence of collisions on the magnetic behaviour of large systems. Proc. R. Soc. Lond. A Math. Phys. Sci. 211, 517–525 (1952).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Polyanovsky, V. Magnetointersubband oscillations of conductivity in a two-dimensional electronic system. Sov. Phys. Semicond. 22, 1408–1409 (1988).

    Google Scholar 

  • Polyanovsky, V. High-temperature quantum oscillations of the magnetoresistance in layered systems. Phys. Rev. B 47, 1985–1990 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Huber, N. et al. Network of topological nodal planes, multifold degeneracies, and Weyl points in CoSi. Phys. Rev. Lett. 129, 026401 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, C. et al. Quasi-symmetry-protected topology in a semi-metal. Nat. Phys. 18, 813–818 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alexandrov, A. S. & Kabanov, V. V. Combination quantum oscillations in canonical single-band Fermi liquids. Phys. Rev. B 76, 233101 (2007).

    Article 
    ADS 

    Google Scholar 

  • Allocca, A. A. & Cooper, N. R. Low-frequency quantum oscillations from interactions in layered metals. Phys. Rev. Res. 3, L042009 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cohen, M. H. & Falicov, L. M. Magnetic breakdown in crystals. Phys. Rev. Lett. 7, 231–233 (1961).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Blount, E. I. Bloch electrons in a magnetic field. Phys. Rev. 126, 1636–1653 (1962).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Chambers, R. G. Magnetic breakdown in real metals. Proc. Phys. Soc. 88, 701–715 (1966).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bergmann, G. Weak localization in thin films: a time-of-flight experiment with conduction electrons. Phys. Rep. 107, 1–58 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lee, P. A. & Stone, A. D. Universal conductance fluctuations in metals. Phys. Rev. Lett. 55, 1622–1625 (1985).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fu, Y. et al. Quantum transport evidence of topological band structures of Kagome superconductor CsV3Sb5. Phys. Rev. Lett. 127, 207002 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Allocca, A. A. & Cooper, N. R. Fluctuation-dominated quantum oscillations in excitonic insulators. Preprint at https://arxiv.org/abs/2302.06633 (2023).

  • Yuan, Q.-Q. et al. Quasiparticle interference evidence of the topological Fermi arc states in chiral fermionic semimetal CoSi. Sci. Adv. 5, eaaw9485 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, D. S. et al. Single crystal growth and magnetoresistivity of topological semimetal CoSi. Chin. Phys. Lett. 36, 077102 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Xu, X. et al. Crystal growth and quantum oscillations in the topological chiral semimetal CoSi. Phys. Rev. B 100, 045104 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, H. et al. de Haas–van Alphen quantum oscillations and electronic structure in the large-Chern-number topological chiral semimetal CoSi. Phys. Rev. B 102, 115129 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sasmal, S. et al. Shubnikov-de Haas and de Haas-van Alphen oscillations in Czochralski grown CoSi single crystal. J. Phys. Condens. Matter 34, 425702 (2022).

    Article 
    CAS 

    Google Scholar 

  • Neubauer, A. et al. Ultra-high vacuum compatible image furnace. Rev. Sci. Instrum. 82, 013902 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bauer, A., Benka, G., Regnat, A., Franz, C. & Pfleiderer, C. Ultra-high vacuum compatible preparation chain for intermetallic compounds. Rev. Sci. Instrum. 87, 113902 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Springford, M. The anisotropy of conduction electron scattering in the noble metals. Adv. Phys. 20, 493–550 (1971).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Paul, D. M. & Springford, M. Accurate measurement of changes in electron scattering in the de Haas-van Alphen effect. J. Low Temp. Phys. 27, 561–569 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Blaha, P. et al. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, P., Zhou, Q. & Zhang, S.-C. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Pshenay-Severin, D. A., Ivanov, Y. V., Burkov, A. A. & Burkov, A. T. Band structure and unconventional electronic topology of CoSi. J. Phys. Condens. Matter 30, 135501 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wilde, M. & Pfleiderer, C. Large curvature near a small gap. Nat. Phys. 18, 731–732 (2022).

    Article 
    CAS 

    Google Scholar 

  • O’Brien, T. E., Diez, M. & Beenakker, C. W. J. Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal. Phys. Rev. Lett. 116, 236401 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Alexandrov, A. S. & Bratkovsky, A. M. New fundamental dHvA frequency in canonical low-dimensional Fermi liquids. Phys. Lett. A 234, 53–58 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stark, R. W. & Friedberg, C. B. Quantum interference of electron waves in a normal metal. Phys. Rev. Lett. 26, 556–559 (1971).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kaganov, M. I. & Slutskin, A. A. Coherent magnetic breakdown. Phys. Rep. 98, 189–271 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Leadley, D. R. et al. Intersubband resonant scattering in GaAs-Ga1−xAlxAs heterojunctions. Phys. Rev. B 46, 12439–12447 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Coleridge, P. T. Inter-subband scattering in a 2D electron gas. Semicond. Sci. Technol. 5, 961–966 (1990).

    Article 
    ADS 

    Google Scholar 

  • Raikh, M. E. & Shahbazyan, T. V. Magnetointersubband oscillations of conductivity in a two-dimensional electronic system. Phys. Rev. B 49, 5531–5540 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Goran, A. V., Bykov, A. A., Toropov, A. I. & Vitkalov, S. A. Effect of electron-electron scattering on magnetointersubband resistance oscillations of two-dimensional electrons in GaAs quantum wells. Phys. Rev. B 80, 193305 (2009).

    Article 
    ADS 

    Google Scholar 

  • Grigoriev, P. D. Theory of the Shubnikov–de Haas effect in quasi-two-dimensional metals. Phys. Rev. B 67, 144401 (2003).

    Article 
    ADS 

    Google Scholar 

  • Thomas, I. O., Kabanov, V. V. & Alexandrov, A. S. Shubnikov–de Haas effect in multiband quasi-two-dimensional metals. Phys. Rev. B 77, 075434 (2008).

    Article 
    ADS 

    Google Scholar 

  • Leeb, V., & Knolle, J. On the theory of difference frequency quantum oscillations. Preprint at https://arxiv.org/abs/2306.10760 (2023).

  • Bastin, A., Lewiner, C., Betbeder-matibet, O. & Nozieres, P. Quantum oscillations of the Hall effect of a Fermion gas with random impurity scattering. J. Phys. Chem. Solids 32, 1811–1824 (1971).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mañes, J. L. Existence of bulk chiral fermions and crystal symmetry. Phys. Rev. B 85, 155118 (2012).

    Article 
    ADS 

    Google Scholar 

  • Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • Yasuoka, H., Sherwood, R., Wernick, J. & Wertheim, G. Local moment formation in substituted and cobalt-rich CoSi. Mater. Res. Bull. 9, 223–231 (1974).

    Article 
    CAS 

    Google Scholar 

  • Wernick, J., Wertheim, G. & Sherwood, R. Magnetic behavior of the monosilicides of the 3d-transition elements. Mater. Res. Bull. 7, 1431–1441 (1972).

    Article 
    CAS 

    Google Scholar 

  • Wertheim, G. K., Wernick, J. H. & Buchanan, D. N. E. Mössbauer effect in Co1−xFexSi. J. Appl. Phys. 37, 3333–3337 (1966).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kawarazaki, S., Yasuoka, H. & Nakamura, Y. Moment formation on Co atom in FeSi–CoSi mixed system -Co59 NMR in the paramagnetic state. Solid State Commun. 10, 919–921 (1972).

    Article 
    ADS 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *