Luttinger, J. M. Theory of the de Haas-van Alphen effect for a system of interacting fermions. Phys. Rev. 121, 1251–1258 (1961).
Google Scholar
Engelsberg, S. & Simpson, G. Influence of electron-phonon interactions on the de Haas-van Alphen effect. Phys. Rev. B 2, 1657–1665 (1970).
Google Scholar
Wasserman, A., Springford, M. & Hewson, A. Theory of the de Haas-van Alphen effect for heavy-fermion alloys. J. Phys. Condens. Matter 1, 2669–2676 (1989).
Google Scholar
Taillefer, L., Newbury, R., Lonzarich, G., Fisk, Z. & Smith, J. Direct observation of heavy quasiparticles in UPt3 via the dHvA effect. J. Mag. Mag. Mater. 63–64, 372–376 (1987).
Google Scholar
van Delft, M. R. et al. Electron-hole tunneling revealed by quantum oscillations in the nodal-line semimetal HfSiS. Phys. Rev. Lett. 121, 256602 (2018).
Google Scholar
Müller, C. S. A. et al. Determination of the Fermi surface and field-induced quasiparticle tunneling around the Dirac nodal loop in ZrSiS. Phys. Rev. Res. 2, 023217 (2020).
Google Scholar
Ding, L. et al. Quantum oscillations, magnetic breakdown and thermal Hall effect in Co3Sn2S2. J. Phys. D Appl. Phys. 54, 454003 (2021).
Google Scholar
Pavlosiuk, O., Swatek, P. W., Wang, J.-P., Wiśniewski, P. & Kaczorowski, D. Giant magnetoresistance, Fermi-surface topology, Shoenberg effect, and vanishing quantum oscillations in the type-II Dirac semimetal candidates MoSi2 and WSi2. Phys. Rev. B 105, 075141 (2022).
Google Scholar
Broyles, C. et al. Revealing a 3D Fermi surface and electron-hole tunneling in UTe2 with quantum oscillations. Preprint at https://arxiv.org/abs/2303.09050 (2023).
Reiss, P. et al. Quenched nematic criticality and two superconducting domes in an iron-based superconductor. Nat. Phys. 16, 89–94 (2020).
Google Scholar
Sebastian, S. E. & Proust, C. Quantum oscillations in hole-doped cuprates. Annu. Rev. Condens. Matter Phys. 6, 411–430 (2015).
Google Scholar
McMullan, G. J. et al. The Fermi surface and f-valence electron count of UPt3. New J. Phys. 10, 053029 (2008).
Google Scholar
Shishido, H. et al. Anomalous change in the de Haas–van Alphen oscillations of CeCoIn5 at ultralow temperatures. Phys. Rev. Lett. 120, 177201 (2018).
Google Scholar
Dalgaard, K. J., Lei, S., Wiedmann, S., Bremholm, M. & Schoop, L. M. Anomalous Shubnikov-de Haas quantum oscillations in rare-earth tritelluride NdTe3. Phys. Rev. B 102, 245109 (2020).
Google Scholar
Sunko, V. et al. Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking. Nature 549, 492–496 (2017).
Google Scholar
Phinney, I. et al. Strong interminivalley scattering in twisted bilayer graphene revealed by high-temperature magneto-oscillations. Phys. Rev. Lett. 127, 056802 (2021).
Google Scholar
Broyles, C. et al. Effect of the interlayer ordering on the Fermi surface of Kagome superconductor CsV3Sb5 revealed by quantum oscillations. Phys. Rev. Lett. 129, 157001 (2022).
Google Scholar
Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).
Google Scholar
Landau, L. Diamagnetismus der Metalle. Z. Phys. 64, 629–637 (1930).
Google Scholar
de Haas, W. J. & van Alphen, P. M. The dependence of the susceptibility of diamagnetic metals upon the field. Proc. Netherlands Roy. Acad. Sci. 33, 1106–1118 (1930).
Google Scholar
Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).
Peierls, R. Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys. 80, 763–791 (1933).
Google Scholar
Onsager, L. Interpretation of the de Haas-van Alphen effect. Lond. Edinb. Dublin Philos. Mag. J. Sci. 43, 1006–1008 (1952).
Google Scholar
Lifshitz, I. M. & Kosevich, A. Theory of magnetic susceptibility in metals at low temperatures. Sov. Phys. JETP 2, 636–645 (1956).
Kartsovnik, M. V. High magnetic fields: a tool for studying electronic properties of layered organic metals. Chem. Rev. 104, 5737–5781 (2004).
Google Scholar
Julian, S. R. in Strongly Correlated Systems (eds Avella, A. & Mancini, F.) 137–172 (Springer, 2015).
Tan, B. S. et al. Unconventional Fermi surface in an insulating state. Science 349, 287–290 (2015).
Google Scholar
Han, Z., Li, T., Zhang, L., Sullivan, G. & Du, R.-R. Anomalous conductance oscillations in the hybridization gap of InAs/GaSb quantum wells. Phys. Rev. Lett. 123, 126803 (2019).
Google Scholar
Knolle, J. & Cooper, N. R. Quantum oscillations without a Fermi surface and the anomalous de Haas–van Alphen effect. Phys. Rev. Lett. 115, 146401 (2015).
Google Scholar
Sodemann, I., Chowdhury, D. & Senthil, T. Quantum oscillations in insulators with neutral Fermi surfaces. Phys. Rev. B 97, 045152 (2018).
Google Scholar
Dingle, R. B. Some magnetic properties of metals II. The influence of collisions on the magnetic behaviour of large systems. Proc. R. Soc. Lond. A Math. Phys. Sci. 211, 517–525 (1952).
Google Scholar
Polyanovsky, V. Magnetointersubband oscillations of conductivity in a two-dimensional electronic system. Sov. Phys. Semicond. 22, 1408–1409 (1988).
Polyanovsky, V. High-temperature quantum oscillations of the magnetoresistance in layered systems. Phys. Rev. B 47, 1985–1990 (1993).
Google Scholar
Huber, N. et al. Network of topological nodal planes, multifold degeneracies, and Weyl points in CoSi. Phys. Rev. Lett. 129, 026401 (2022).
Google Scholar
Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019).
Google Scholar
Guo, C. et al. Quasi-symmetry-protected topology in a semi-metal. Nat. Phys. 18, 813–818 (2022).
Google Scholar
Alexandrov, A. S. & Kabanov, V. V. Combination quantum oscillations in canonical single-band Fermi liquids. Phys. Rev. B 76, 233101 (2007).
Google Scholar
Allocca, A. A. & Cooper, N. R. Low-frequency quantum oscillations from interactions in layered metals. Phys. Rev. Res. 3, L042009 (2021).
Google Scholar
Cohen, M. H. & Falicov, L. M. Magnetic breakdown in crystals. Phys. Rev. Lett. 7, 231–233 (1961).
Google Scholar
Blount, E. I. Bloch electrons in a magnetic field. Phys. Rev. 126, 1636–1653 (1962).
Google Scholar
Chambers, R. G. Magnetic breakdown in real metals. Proc. Phys. Soc. 88, 701–715 (1966).
Google Scholar
Bergmann, G. Weak localization in thin films: a time-of-flight experiment with conduction electrons. Phys. Rep. 107, 1–58 (1984).
Google Scholar
Lee, P. A. & Stone, A. D. Universal conductance fluctuations in metals. Phys. Rev. Lett. 55, 1622–1625 (1985).
Google Scholar
Fu, Y. et al. Quantum transport evidence of topological band structures of Kagome superconductor CsV3Sb5. Phys. Rev. Lett. 127, 207002 (2021).
Google Scholar
Allocca, A. A. & Cooper, N. R. Fluctuation-dominated quantum oscillations in excitonic insulators. Preprint at https://arxiv.org/abs/2302.06633 (2023).
Yuan, Q.-Q. et al. Quasiparticle interference evidence of the topological Fermi arc states in chiral fermionic semimetal CoSi. Sci. Adv. 5, eaaw9485 (2019).
Google Scholar
Wu, D. S. et al. Single crystal growth and magnetoresistivity of topological semimetal CoSi. Chin. Phys. Lett. 36, 077102 (2019).
Google Scholar
Xu, X. et al. Crystal growth and quantum oscillations in the topological chiral semimetal CoSi. Phys. Rev. B 100, 045104 (2019).
Google Scholar
Wang, H. et al. de Haas–van Alphen quantum oscillations and electronic structure in the large-Chern-number topological chiral semimetal CoSi. Phys. Rev. B 102, 115129 (2020).
Google Scholar
Sasmal, S. et al. Shubnikov-de Haas and de Haas-van Alphen oscillations in Czochralski grown CoSi single crystal. J. Phys. Condens. Matter 34, 425702 (2022).
Google Scholar
Neubauer, A. et al. Ultra-high vacuum compatible image furnace. Rev. Sci. Instrum. 82, 013902 (2011).
Google Scholar
Bauer, A., Benka, G., Regnat, A., Franz, C. & Pfleiderer, C. Ultra-high vacuum compatible preparation chain for intermetallic compounds. Rev. Sci. Instrum. 87, 113902 (2016).
Google Scholar
Springford, M. The anisotropy of conduction electron scattering in the noble metals. Adv. Phys. 20, 493–550 (1971).
Google Scholar
Paul, D. M. & Springford, M. Accurate measurement of changes in electron scattering in the de Haas-van Alphen effect. J. Low Temp. Phys. 27, 561–569 (1977).
Google Scholar
Blaha, P. et al. WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Google Scholar
Tang, P., Zhou, Q. & Zhang, S.-C. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119, 206402 (2017).
Google Scholar
Pshenay-Severin, D. A., Ivanov, Y. V., Burkov, A. A. & Burkov, A. T. Band structure and unconventional electronic topology of CoSi. J. Phys. Condens. Matter 30, 135501 (2018).
Google Scholar
Wilde, M. & Pfleiderer, C. Large curvature near a small gap. Nat. Phys. 18, 731–732 (2022).
Google Scholar
O’Brien, T. E., Diez, M. & Beenakker, C. W. J. Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal. Phys. Rev. Lett. 116, 236401 (2016).
Google Scholar
Alexandrov, A. S. & Bratkovsky, A. M. New fundamental dHvA frequency in canonical low-dimensional Fermi liquids. Phys. Lett. A 234, 53–58 (1997).
Google Scholar
Stark, R. W. & Friedberg, C. B. Quantum interference of electron waves in a normal metal. Phys. Rev. Lett. 26, 556–559 (1971).
Google Scholar
Kaganov, M. I. & Slutskin, A. A. Coherent magnetic breakdown. Phys. Rep. 98, 189–271 (1983).
Google Scholar
Leadley, D. R. et al. Intersubband resonant scattering in GaAs-Ga1−xAlxAs heterojunctions. Phys. Rev. B 46, 12439–12447 (1992).
Google Scholar
Coleridge, P. T. Inter-subband scattering in a 2D electron gas. Semicond. Sci. Technol. 5, 961–966 (1990).
Google Scholar
Raikh, M. E. & Shahbazyan, T. V. Magnetointersubband oscillations of conductivity in a two-dimensional electronic system. Phys. Rev. B 49, 5531–5540 (1994).
Google Scholar
Goran, A. V., Bykov, A. A., Toropov, A. I. & Vitkalov, S. A. Effect of electron-electron scattering on magnetointersubband resistance oscillations of two-dimensional electrons in GaAs quantum wells. Phys. Rev. B 80, 193305 (2009).
Google Scholar
Grigoriev, P. D. Theory of the Shubnikov–de Haas effect in quasi-two-dimensional metals. Phys. Rev. B 67, 144401 (2003).
Google Scholar
Thomas, I. O., Kabanov, V. V. & Alexandrov, A. S. Shubnikov–de Haas effect in multiband quasi-two-dimensional metals. Phys. Rev. B 77, 075434 (2008).
Google Scholar
Leeb, V., & Knolle, J. On the theory of difference frequency quantum oscillations. Preprint at https://arxiv.org/abs/2306.10760 (2023).
Bastin, A., Lewiner, C., Betbeder-matibet, O. & Nozieres, P. Quantum oscillations of the Hall effect of a Fermion gas with random impurity scattering. J. Phys. Chem. Solids 32, 1811–1824 (1971).
Google Scholar
Mañes, J. L. Existence of bulk chiral fermions and crystal symmetry. Phys. Rev. B 85, 155118 (2012).
Google Scholar
Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).
Google Scholar
Yasuoka, H., Sherwood, R., Wernick, J. & Wertheim, G. Local moment formation in substituted and cobalt-rich CoSi. Mater. Res. Bull. 9, 223–231 (1974).
Google Scholar
Wernick, J., Wertheim, G. & Sherwood, R. Magnetic behavior of the monosilicides of the 3d-transition elements. Mater. Res. Bull. 7, 1431–1441 (1972).
Google Scholar
Wertheim, G. K., Wernick, J. H. & Buchanan, D. N. E. Mössbauer effect in Co1−xFexSi. J. Appl. Phys. 37, 3333–3337 (1966).
Google Scholar
Kawarazaki, S., Yasuoka, H. & Nakamura, Y. Moment formation on Co atom in FeSi–CoSi mixed system -Co59 NMR in the paramagnetic state. Solid State Commun. 10, 919–921 (1972).
Google Scholar