Strange IndiaStrange India


  • Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020).

    CAS 
    Article 

    Google Scholar 

  • Lau, C. N., Bockrath, M. W., Mak, K. F. & Zhang, F. Reproducibility in the fabrication and physics of moiré materials. Nature 602, 41–50 (2022).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812–816 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

    ADS 
    Article 

    Google Scholar 

  • Shi, Y. et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zhang, F., Sahu, B., Min, H. & MacDonald, A. H. Band structure of ABC-stacked graphene trilayers. Phys. Rev. B 82, 35409 (2010).

    ADS 
    Article 

    Google Scholar 

  • Zhou, H. et al. Half and quarter metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Velasco, J. et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nat. Nanotechnol. 7, 156–160 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Geisenhof, F. R. et al. Quantum anomalous Hall octet driven by orbital magnetism in bilayer graphene. Nature 598, 53–58 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Varlet, A. et al. Anomalous sequence of quantum Hall liquids revealing a tunable Lifshitz transition in bilayer graphene. Phys. Rev. Lett. 113, 116602 (2014).

    ADS 
    Article 

    Google Scholar 

  • Varlet, A. et al. Tunable Fermi surface topology and Lifshitz transition in bilayer graphene. Synth. Met. 210, 19–31 (2015).

    CAS 
    Article 

    Google Scholar 

  • Shtyk, A., Goldstein, G. & Chamon, C. Electrons at the monkey saddle: a multicritical Lifshitz point. Phys. Rev. B 95, 35137 (2017).

    ADS 
    Article 

    Google Scholar 

  • Tešanović, Z., Axel, F. & Halperin, B. I. “Hall crystal” versus Wigner crystal. Phys. Rev. B 39, 8525–8551 (1989).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • Sharpe Aaron, L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cao Yuan, et al. Nematicity and competing orders in superconducting magic-angle graphene. Science 372, 264–271 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kou, A. et al. Electron–hole asymmetric integer and fractional quantum Hall effect in bilayer graphene. Science 345, 55–57 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ki, D.-K., Fal’ko, V. I., Abanin, D. A. & Morpurgo, A. F. Observation of even denominator fractional quantum Hall effect in suspended bilayer graphene. Nano Lett. 14, 2135–2139 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • McCann, E. & Fal’ko, V. I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 86805 (2006).

    ADS 
    Article 

    Google Scholar 

  • Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    CAS 
    Article 

    Google Scholar 

  • Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Giuliani, G. & Vignale, G. Quantum Theory of the Electron Liquid (Cambridge Univ. Press, 2005).

  • Jaoui, A. et al. Quantum critical behaviour in magic-angle twisted bilayer graphene. Nat. Phys. 18, 633–638 (2022).

  • Abrahams, E., Kravchenko, S. V. & Sarachik, M. P. Metallic behavior and related phenomena in two dimensions. Rev. Mod. Phys. 73, 251–266 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • de la Barrera, S. C. et al. Cascade of isospin phase transitions in Bernal-stacked bilayer graphene at zero magnetic field. Nat. Phys. https://doi.org/10.1038/s41567-022-01616-w (2022).

  • Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent. J. Cryst. Growth 303, 525–529 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Winterer, F. et al. Spontaneous gully-polarized quantum Hall states in ABA trilayer graphene. Nano Lett. 22, 3317–3322 (2022).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lee, K. et al. Chemical potential and quantum Hall ferromagnetism in bilayer graphene. Science 345, 58–61 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Li, J., Tupikov, Y., Watanabe, K., Taniguchi, T. & Zhu, J. Effective Landau level diagram of bilayer graphene. Phys. Rev. Lett. 120, 47701 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Freitag, F., Trbovic, J., Weiss, M. & Schönenberger, C. Spontaneously gapped ground state in suspended bilayer graphene. Phys. Rev. Lett. 108, 76602 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Das Sarma, S., Hwang, E. H. & Rossi, E. Theory of carrier transport in bilayer graphene. Phys. Rev. B 81, 161407 (2010).

    ADS 
    Article 

    Google Scholar 

  • Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Maher, P. et al. Evidence for a spin phase transition at charge neutrality in bilayer graphene. Nat. Phys. 9, 154–158 (2013).

    CAS 
    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *