Strange IndiaStrange India


  • Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).

    Google Scholar 

  • Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).

    Google Scholar 

  • Paine, R. T. Food webs: linkage, interaction strength and community infrastructure. J. Anim. Ecol. 49, 666–685 (1980).

    Google Scholar 

  • Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Fey, S. B. et al. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proc. Natl Acad. Sci. USA 112, 1083–1088 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fey, S. B., Gibert, J. P. & Siepielski, A. M. The consequences of mass mortality events for the structure and dynamics of biological communities. Oikos 128, 1679–1690 (2019).

    Google Scholar 

  • Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Syst. 28, 289–316 (1997).

    Google Scholar 

  • Hamilton, S. L. et al. Disease-driven mass mortality event leads to widespread extirpation and variable recovery potential of a marine predator across the eastern Pacific. Proc. R. Soc. B 288, 20211195 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tye, S. P. et al. Climate warming amplifies the frequency of fish mass mortality events across north temperate lakes. Limnol. Oceanogr. Lett. 7, 510–519 (2022).

    Google Scholar 

  • Threlkeld, S. T. Planktivory and planktivore biomass effects on zooplankton, phytoplankton, and the trophic cascade: fish effects on plankton. Limnol. Oceanogr. 33, 1362–1375 (1988).

    Google Scholar 

  • Vanni, M. J. & Findlay, D. L. Trophic cascades and phytoplankton community structure. Ecology 71, 921–937 (1990).

    Google Scholar 

  • Leopold, A. A Sand County Almanac 129–133 (Random House, 1949).

  • Schindler, D. W. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184, 897–899 (1974).

    CAS 
    PubMed 

    Google Scholar 

  • Vitousek, P. M. Beyond global warming: ecology and global change. Ecology 75, 1861–1876 (1994).

    Google Scholar 

  • Bergquist, A. M. & Carpenter, S. R. Limnetic herbivory: effects on phytoplankton populations and primary production. Ecology 67, 1351–1360 (1986).

    Google Scholar 

  • Hansen, P. J., Bjørnsen, P. K. & Hansen, B. W. Zooplankton grazing and growth: Scaling within the 2–2,000-μm body size range. Limnol. Oceanogr. 42, 687–704 (1997).

    Google Scholar 

  • Porter, K. G. Selective grazing and differential digestion of algae by zooplankton. Nature 244, 179–180 (1973).

    Google Scholar 

  • Su, H. et al. Determinants of trophic cascade strength in freshwater ecosystems: a global analysis. Ecology 102, e03370 (2021).

    PubMed 

    Google Scholar 

  • Boros, G., Takács, P. & Vanni, M. J. The fate of phosphorus in decomposing fish carcasses: a mesocosm experiment. Freshw. Biol. 60, 479–489 (2015).

    CAS 

    Google Scholar 

  • Brooks, J. L. & Dodson, S. I. Predation, body size, and composition of plankton: the effect of a marine planktivore on lake plankton illustrates theory of size, competition, and predation. Science 150, 28–35 (1965).

    CAS 
    PubMed 

    Google Scholar 

  • Galbraith, M. G. Size-selective predation on daphnia by rainbow trout and yellow perch. Trans. Am. Fish. Soc. 96, 1–10 (1967).

    Google Scholar 

  • DeMott, W. R. & Kerfoot, W. C. Competition among cladocerans: nature of the interaction between bosmina and daphnia. Ecology 63, 1949 (1982).

    Google Scholar 

  • Gibert, J. P., Han, Z. Y., Wieczynski, D. J., Votzke, S. & Yammine, A. Feedbacks between size and density dependence determine rapid eco-phenotypic dynamics. Funct. Ecol. 6, 1668–1680 (2022).

    Google Scholar 

  • Borer, E. T. et al. What determines the strength of a trophic cascade? Ecology 86, 528–537 (2005).

    Google Scholar 

  • Vanni, M. J. et al. Effects on lower trophic levels of massive fish mortality. Nature 344, 333–335 (1990).

    Google Scholar 

  • Nagdali, S. S. & Gupta, P. K. Impact of mass mortality of a mosquito fish, Gambusia affinis on the ecology of a fresh water eutrophic lake (Lake Naini Tal, India). Hydrobiologia 468, 45–52 (2002).

    Google Scholar 

  • Vanni, M. J. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst. 33, 341–370 (2002).

    Google Scholar 

  • Van Donk, E., Ianora, A. & Vos, M. Induced defences in marine and freshwater phytoplankton: a review. Hydrobiologia 668, 3–19 (2011).

    Google Scholar 

  • Conley, D. J. et al. Controlling eutrophication: nitrogen and phosphorus. Science 323, 1014–1015 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • De Cáceres, M. et al. Trajectory analysis in community ecology. Ecol. Monogr. 89, 1–20 (2019).

  • Mougi, A. Coupling of green and brown food webs and ecosystem stability. Ecol. Evol. 10, 9192–9199 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Fricke, E. C. et al. Collapse of terrestrial mammal food webs since the Late Pleistocene. Science 377, 1008–1011 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

    Google Scholar 

  • Ives, A. R. & Cardinale, B. J. Food-web interactions govern the resistance of communities after non-random extinctions. Nature 429, 174–177 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955).

    Google Scholar 

  • McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Forbes, S. The lake as a microcosm. INHS Bull. 15, 537–550 (1925).

    Google Scholar 

  • Spivak, A. C., Vanni, M. J. & Mette, E. M. Moving on up: can results from simple aquatic mesocosm experiments be applied across broad spatial scales? Freshw. Biol. 56, 279–291 (2011).

    Google Scholar 

  • Dzialowski, A. R. et al. Are the abiotic and biotic characteristics of aquatic mesocosms representative of in situ conditions? J. Limnol. 73, 603–612 (2014).

    Google Scholar 

  • Bottrell, H. H. et al. A review of some problems in zooplankton production studies. Nor. J. Zool. 24, 419–456 (1976).

    Google Scholar 

  • Davis, C. S. & Wiebe, P. H. Macrozooplankton biomass in a warm-core Gulf Stream ring: time series changes in size structure, taxonomic composition, and vertical distribution. J. Geophys. Res. 90, 8871–8884 (1985).

    Google Scholar 

  • Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).

    CAS 

    Google Scholar 

  • Verity, P. G. et al. Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol. Oceanogr. 37, 1434–1446 (1992).

    CAS 

    Google Scholar 

  • Vanni, M. J. Competition in zooplankton communities: suppression of small species by Daphnia pulex 1: competition among zooplankton. Limnol. Oceanogr. 31, 1039–1056 (1986).

    CAS 

    Google Scholar 

  • Hall, D. J., Cooper, W. E. & Werner, E. E. An experimental approach to the production dynamics and structure of freshwater animal communities. Limnol. Oceanogr. 15, 839–928 (1970).

    Google Scholar 

  • Bartell, S. M. Influence of prey abundance on size-selective predation by bluegills. Trans. Am. Fish. Soc. 111, 453–461 (1982).

    Google Scholar 

  • Neiffer, D. L. & Stamper, M. A. Fish sedation, anesthesia, analgesia, and euthanasia: considerations, methods, and types of drugs. ILAR J. 50, 343–360 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Barnett, A. J., Finlay, K. & Beisner, B. E. Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshw. Biol. 52, 796–813 (2007).

    Google Scholar 

  • Cupertino, A., Gücker, B., Von Rückert, G. & Figueredo, C. C. Phytoplankton assemblage composition as an environmental indicator in routine lentic monitoring: taxonomic versus functional groups. Ecol. Indic. 101, 522–532 (2019).

    CAS 

    Google Scholar 

  • Arar, E. J. In Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence.(Environmental Protection Agency, 1997).

  • Standard Operating Procedure For In Vitro Determination of Chlorophyll-a in Freshwater Phytoplankton by Fluorescence (Environmental Protection Agency, 2013).

  • Knefelkamp, B., Carstens, K. & Wiltshire, K. H. Comparison of different filter types on chlorophyll-a retention and nutrient measurements. J. Exp. Mar. Biol. Ecol. 345, 61–70 (2007).

    CAS 

    Google Scholar 

  • Arar, E. J. Evaluation of a New Fluorometric Technique That Uses Highly Selective Interference Filters For Measuring Chlorophyll a in the Presence of Chlorophyll b and Pheopigments (Environmental Protection Agency, 1994).

  • Welschmeyer, N. A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 39, 1985–1992 (1994).

    CAS 

    Google Scholar 

  • Hrycik, A. R., Shambaugh, A. & Stockwell, J. D. Comparison of FlowCAM and microscope biovolume measurements for a diverse freshwater phytoplankton community. J. Plankton Res. 41, 849–864 (2019).

    Google Scholar 

  • Breier, C. F. & Buskey, E. J. Effects of the red tide dinoflagellate, Karenia brevis, on grazing and fecundity in the copepod Acartia tonsa. J. Plankton Res. 29, 115–126 (2007).

    Google Scholar 

  • Mack, H. R., Conroy, J. D., Blocksom, K. A., Stein, R. A. & Ludsin, S. A. A comparative analysis of zooplankton field collection and sample enumeration methods: zooplankton sampling and counting methods. Limnol. Oceanogr. Methods 10, 41–53 (2012).

    Google Scholar 

  • Bogdan, K. G. & Gilbert, J. J. Body size and food size in freshwater zooplankton. Proc. Natl Acad. Sci. USA 81, 6427–6431 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Google Scholar 

  • Peters, R. H. The Ecological Implications of Body Size (Cambridge Univ. Press, 1983).

  • Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. & Charnov, E. L. Effects of body size and temperature on population growth. Am. Nat. 163, 429–441 (2004).

    PubMed 

    Google Scholar 

  • De Gooijer, J. G. & Hyndman, R. J. 25 years of time series forecasting. Int. J. Forecast. 22, 443–473 (2006).

    Google Scholar 

  • Robert, H. S. & Stoffer, D. S. Time Series Analysis and Its Application (Springer, 2017).

  • De Livera, A. M., Hyndman, R. J. & Snyder, R. D. Forecasting time series with complex seasonal patterns using exponential smoothing. J. Am. Stat. Assoc. 106, 1513–1527 (2011).

    MathSciNet 

    Google Scholar 

  • Mann, M. E. Smoothing of climate time series revisited. Geophys. Res. Lett. 35, L16708 (2008).

    Google Scholar 

  • Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).

    MathSciNet 

    Google Scholar 

  • Pinherio, J., Bates, D. & R Core Team. nlme: linear and nonlinear mixed effects models (2022).

  • Wood, S. N. Thin-plate regression spine. J. R. Stat. Soc. B 65, 95–114 (2003).

    Google Scholar 

  • Sturbois, A. et al. Extending community trajectory analysis: new metrics and representation. Ecol. Modell. 440, 109400 (2021).

    Google Scholar 

  • Dexter, E., Rollwagen-Bollens, G. & Bollens, S. M. The trouble with stress: a flexible method for the evaluation of nonmetric multidimensional scaling. Limnol. Oceanogr. Methods 16, 434–443 (2018).

    Google Scholar 

  • Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).

    Google Scholar 

  • Domínguez-García, V., Dakos, V. & Kéfi, S. Unveiling dimensions of stability in complex ecological networks. Proc. Natl Acad. Sci. USA 116, 25714–25720 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *