Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).
Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).
Paine, R. T. Food webs: linkage, interaction strength and community infrastructure. J. Anim. Ecol. 49, 666–685 (1980).
Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
Google Scholar
Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003).
Google Scholar
Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).
Google Scholar
Fey, S. B. et al. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proc. Natl Acad. Sci. USA 112, 1083–1088 (2015).
Google Scholar
Fey, S. B., Gibert, J. P. & Siepielski, A. M. The consequences of mass mortality events for the structure and dynamics of biological communities. Oikos 128, 1679–1690 (2019).
Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Syst. 28, 289–316 (1997).
Hamilton, S. L. et al. Disease-driven mass mortality event leads to widespread extirpation and variable recovery potential of a marine predator across the eastern Pacific. Proc. R. Soc. B 288, 20211195 (2021).
Google Scholar
Tye, S. P. et al. Climate warming amplifies the frequency of fish mass mortality events across north temperate lakes. Limnol. Oceanogr. Lett. 7, 510–519 (2022).
Threlkeld, S. T. Planktivory and planktivore biomass effects on zooplankton, phytoplankton, and the trophic cascade: fish effects on plankton. Limnol. Oceanogr. 33, 1362–1375 (1988).
Vanni, M. J. & Findlay, D. L. Trophic cascades and phytoplankton community structure. Ecology 71, 921–937 (1990).
Leopold, A. A Sand County Almanac 129–133 (Random House, 1949).
Schindler, D. W. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184, 897–899 (1974).
Google Scholar
Vitousek, P. M. Beyond global warming: ecology and global change. Ecology 75, 1861–1876 (1994).
Bergquist, A. M. & Carpenter, S. R. Limnetic herbivory: effects on phytoplankton populations and primary production. Ecology 67, 1351–1360 (1986).
Hansen, P. J., Bjørnsen, P. K. & Hansen, B. W. Zooplankton grazing and growth: Scaling within the 2–2,000-μm body size range. Limnol. Oceanogr. 42, 687–704 (1997).
Porter, K. G. Selective grazing and differential digestion of algae by zooplankton. Nature 244, 179–180 (1973).
Su, H. et al. Determinants of trophic cascade strength in freshwater ecosystems: a global analysis. Ecology 102, e03370 (2021).
Google Scholar
Boros, G., Takács, P. & Vanni, M. J. The fate of phosphorus in decomposing fish carcasses: a mesocosm experiment. Freshw. Biol. 60, 479–489 (2015).
Google Scholar
Brooks, J. L. & Dodson, S. I. Predation, body size, and composition of plankton: the effect of a marine planktivore on lake plankton illustrates theory of size, competition, and predation. Science 150, 28–35 (1965).
Google Scholar
Galbraith, M. G. Size-selective predation on daphnia by rainbow trout and yellow perch. Trans. Am. Fish. Soc. 96, 1–10 (1967).
DeMott, W. R. & Kerfoot, W. C. Competition among cladocerans: nature of the interaction between bosmina and daphnia. Ecology 63, 1949 (1982).
Gibert, J. P., Han, Z. Y., Wieczynski, D. J., Votzke, S. & Yammine, A. Feedbacks between size and density dependence determine rapid eco-phenotypic dynamics. Funct. Ecol. 6, 1668–1680 (2022).
Borer, E. T. et al. What determines the strength of a trophic cascade? Ecology 86, 528–537 (2005).
Vanni, M. J. et al. Effects on lower trophic levels of massive fish mortality. Nature 344, 333–335 (1990).
Nagdali, S. S. & Gupta, P. K. Impact of mass mortality of a mosquito fish, Gambusia affinis on the ecology of a fresh water eutrophic lake (Lake Naini Tal, India). Hydrobiologia 468, 45–52 (2002).
Vanni, M. J. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst. 33, 341–370 (2002).
Van Donk, E., Ianora, A. & Vos, M. Induced defences in marine and freshwater phytoplankton: a review. Hydrobiologia 668, 3–19 (2011).
Conley, D. J. et al. Controlling eutrophication: nitrogen and phosphorus. Science 323, 1014–1015 (2009).
Google Scholar
De Cáceres, M. et al. Trajectory analysis in community ecology. Ecol. Monogr. 89, 1–20 (2019).
Mougi, A. Coupling of green and brown food webs and ecosystem stability. Ecol. Evol. 10, 9192–9199 (2020).
Google Scholar
Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006).
Google Scholar
Fricke, E. C. et al. Collapse of terrestrial mammal food webs since the Late Pleistocene. Science 377, 1008–1011 (2022).
Google Scholar
Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).
Ives, A. R. & Cardinale, B. J. Food-web interactions govern the resistance of communities after non-random extinctions. Nature 429, 174–177 (2004).
Google Scholar
MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955).
McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).
Google Scholar
Forbes, S. The lake as a microcosm. INHS Bull. 15, 537–550 (1925).
Spivak, A. C., Vanni, M. J. & Mette, E. M. Moving on up: can results from simple aquatic mesocosm experiments be applied across broad spatial scales? Freshw. Biol. 56, 279–291 (2011).
Dzialowski, A. R. et al. Are the abiotic and biotic characteristics of aquatic mesocosms representative of in situ conditions? J. Limnol. 73, 603–612 (2014).
Bottrell, H. H. et al. A review of some problems in zooplankton production studies. Nor. J. Zool. 24, 419–456 (1976).
Davis, C. S. & Wiebe, P. H. Macrozooplankton biomass in a warm-core Gulf Stream ring: time series changes in size structure, taxonomic composition, and vertical distribution. J. Geophys. Res. 90, 8871–8884 (1985).
Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).
Google Scholar
Verity, P. G. et al. Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol. Oceanogr. 37, 1434–1446 (1992).
Google Scholar
Vanni, M. J. Competition in zooplankton communities: suppression of small species by Daphnia pulex 1: competition among zooplankton. Limnol. Oceanogr. 31, 1039–1056 (1986).
Google Scholar
Hall, D. J., Cooper, W. E. & Werner, E. E. An experimental approach to the production dynamics and structure of freshwater animal communities. Limnol. Oceanogr. 15, 839–928 (1970).
Bartell, S. M. Influence of prey abundance on size-selective predation by bluegills. Trans. Am. Fish. Soc. 111, 453–461 (1982).
Neiffer, D. L. & Stamper, M. A. Fish sedation, anesthesia, analgesia, and euthanasia: considerations, methods, and types of drugs. ILAR J. 50, 343–360 (2009).
Google Scholar
Barnett, A. J., Finlay, K. & Beisner, B. E. Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshw. Biol. 52, 796–813 (2007).
Cupertino, A., Gücker, B., Von Rückert, G. & Figueredo, C. C. Phytoplankton assemblage composition as an environmental indicator in routine lentic monitoring: taxonomic versus functional groups. Ecol. Indic. 101, 522–532 (2019).
Google Scholar
Arar, E. J. In Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence.(Environmental Protection Agency, 1997).
Standard Operating Procedure For In Vitro Determination of Chlorophyll-a in Freshwater Phytoplankton by Fluorescence (Environmental Protection Agency, 2013).
Knefelkamp, B., Carstens, K. & Wiltshire, K. H. Comparison of different filter types on chlorophyll-a retention and nutrient measurements. J. Exp. Mar. Biol. Ecol. 345, 61–70 (2007).
Google Scholar
Arar, E. J. Evaluation of a New Fluorometric Technique That Uses Highly Selective Interference Filters For Measuring Chlorophyll a in the Presence of Chlorophyll b and Pheopigments (Environmental Protection Agency, 1994).
Welschmeyer, N. A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 39, 1985–1992 (1994).
Google Scholar
Hrycik, A. R., Shambaugh, A. & Stockwell, J. D. Comparison of FlowCAM and microscope biovolume measurements for a diverse freshwater phytoplankton community. J. Plankton Res. 41, 849–864 (2019).
Breier, C. F. & Buskey, E. J. Effects of the red tide dinoflagellate, Karenia brevis, on grazing and fecundity in the copepod Acartia tonsa. J. Plankton Res. 29, 115–126 (2007).
Mack, H. R., Conroy, J. D., Blocksom, K. A., Stein, R. A. & Ludsin, S. A. A comparative analysis of zooplankton field collection and sample enumeration methods: zooplankton sampling and counting methods. Limnol. Oceanogr. Methods 10, 41–53 (2012).
Bogdan, K. G. & Gilbert, J. J. Body size and food size in freshwater zooplankton. Proc. Natl Acad. Sci. USA 81, 6427–6431 (1984).
Google Scholar
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Peters, R. H. The Ecological Implications of Body Size (Cambridge Univ. Press, 1983).
Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. & Charnov, E. L. Effects of body size and temperature on population growth. Am. Nat. 163, 429–441 (2004).
Google Scholar
De Gooijer, J. G. & Hyndman, R. J. 25 years of time series forecasting. Int. J. Forecast. 22, 443–473 (2006).
Robert, H. S. & Stoffer, D. S. Time Series Analysis and Its Application (Springer, 2017).
De Livera, A. M., Hyndman, R. J. & Snyder, R. D. Forecasting time series with complex seasonal patterns using exponential smoothing. J. Am. Stat. Assoc. 106, 1513–1527 (2011).
Google Scholar
Mann, M. E. Smoothing of climate time series revisited. Geophys. Res. Lett. 35, L16708 (2008).
Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).
Google Scholar
Pinherio, J., Bates, D. & R Core Team. nlme: linear and nonlinear mixed effects models (2022).
Wood, S. N. Thin-plate regression spine. J. R. Stat. Soc. B 65, 95–114 (2003).
Sturbois, A. et al. Extending community trajectory analysis: new metrics and representation. Ecol. Modell. 440, 109400 (2021).
Dexter, E., Rollwagen-Bollens, G. & Bollens, S. M. The trouble with stress: a flexible method for the evaluation of nonmetric multidimensional scaling. Limnol. Oceanogr. Methods 16, 434–443 (2018).
Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).
Domínguez-García, V., Dakos, V. & Kéfi, S. Unveiling dimensions of stability in complex ecological networks. Proc. Natl Acad. Sci. USA 116, 25714–25720 (2019).
Google Scholar