Strange India All Strange Things About India and world


  • 1.

    Menzies, M. A., Fan, W.-M. & Zhang, M. in Magmatic Processes and Plate Tectonics (eds Prichard, H. M. et al.) 71–81 (Geological Society, 1993).

  • 2.

    Griffin, W. L., Zhang, A. D., O’Reilly, S. Y. & Ryan, C. G. in Mantle Dynamics and Plate Interactions in East Asia (eds Flower, M. et al.) 107–126 (American Geophysical Union, 1998).

  • 3.

    Griffin, W. L. et al. The origin and evolution of Archean lithospheric mantle. Precambr. Res. 127, 19–41 (2003).

    ADS 
    CAS 

    Google Scholar 

  • 4.

    Carlson, R. W., Irving, A. J., Schulze, D. J. & Hearn, B. C. Timing of Precambrian melt depletion and Phanerozoic refertilization events in the lithospheric mantle of the Wyoming Craton and adjacent Central Plains Orogen. Lithos 77, 453–472 (2004).

    ADS 
    CAS 

    Google Scholar 

  • 5.

    Peace, A., Foulger, G., Schiffer, C. & McCaffrey, K. Evolution of Labrador Sea- Baffin Bay: plate or plume processes? Geosci. Can. 44, 91–102 (2017).

    Google Scholar 

  • 6.

    Kopylova, M. G., Tso, E., Ma, F., Liu, J. & Pearson, D. G. The Metasomatized Mantle beneath the North Atlantic Craton: insights from Peridotite Xenoliths of the Chidliak Kimberlite Province (NE Canada). J. Petrol. 60, 1991–2024 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 7.

    James, D. E., Fouch, M. J., VanDecar, J. C., van der Lee, S. & Group, K. S. Tectospheric structure beneath southern Africa. Geophys. Res. Lett. 28, 2485–2488 (2001).

    ADS 

    Google Scholar 

  • 8.

    Hanson, R. E. et al. Coeval large-scale magmatism in the Kalahari and Laurentian cratons during Rodinia assembly. Science 304, 1126–1129 (2004).

    ADS 
    CAS 

    Google Scholar 

  • 9.

    Ernst, R. E., Wingate, M. T. D., Buchan, K. L. & Li, Z. X. Global record of 1600–700Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambr. Res. 160, 159–178 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 10.

    James, D. E. & Fouch, M. J. Formation and evolution of Archaean cratons: insights from southern Africa. Geol. Soc. Lond. Spec. Publ. 199, 1–26 (2002).

    ADS 

    Google Scholar 

  • 11.

    Snyder, D. B., Humphreys, E. & Pearson, D. G. Construction and destruction of some North American cratons. Tectonophysics 694, 464–485 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 12.

    Schaeffer, A. J. & Lebedev, S. Imaging the North American continent using waveform inversion of global and USArray data. Earth Planet. Sci. Lett. 402, 26–41 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 13.

    Lee, C.-T. A., Luffi, P. & Chin, E. J. Building and destroying continental mantle. Annu. Rev. Earth Planet. Sci. 39, 59–90 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 14.

    Aulbach, S. Craton nucleation and formation of thick lithospheric roots. Lithos 149, 16–30 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 15.

    Perchuk, A. L., Gerya, T. V., Zakharov, V. S. & Griffin, W. L. Building cratonic keels in Precambrian plate tectonics. Nature 586, 395–401 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 16.

    Foley, S. F. Rejuvenation and erosion of the cratonic lithosphere. Nat. Geosci. 1, 503–510 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 17.

    Wang, H., van Hunen, J. & Pearson, D. G. The thinning of subcontinental lithosphere: the roles of plume impact and metasomatic weakening. Geochem. Geophys. Geosyst. 16, 1156–1171 (2015).

    ADS 

    Google Scholar 

  • 18.

    Hu, J. et al. Modification of the Western Gondwana craton by plume–lithosphere interaction. Nat. Geosci. 11, 203–210 (2018); publisher correction 11, 544 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 19.

    Wu, F.-Y., Yang, J.-H., Xu, Y.-G., Wilde, S. A. & Walker, R. J. Destruction of the North China Craton in the Mesozoic. Annu. Rev. Earth Planet. Sci. 47, 173–195 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 20.

    LeCheminant, A. N. & Heaman, L. M. Mackenzie igneous events, Canada: middle Proterozoic hotspot magmatism associated with ocean opening. Earth Planet. Sci. Lett. 96, 38–48 (1989).

    ADS 
    CAS 

    Google Scholar 

  • 21.

    Shirey, S. et al. in Deep Mantle Carbon Evolution from the Diamond Record (eds Orcutt, B. N. et. al) Ch. 5, 89–128 (Cambridge Univ. Press, 2019).

  • 22.

    Pearson, D. G. & Wittig, N. in Treatise of Geochemistry 2nd edn, Vol. 3, (Holland, H. D. & Turekian, K. K.) Ch. 3.6, 255–292 (Elsevier, 2014).

  • 23.

    Smit, K. V., Pearson, D. G., Stachel, T. & Seller, M. Peridotites from Attawapiskat, Canada: Mesoproterozoic reworking of Palaeoarchaean lithospheric mantle beneath the northern Superior Superterrane. J. Petrol. 55, 1829–1863 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 24.

    Bleeker, W. Archaean tectonics: a review, with illustrations from the Slave craton. Geol. Soc. Spec. Publ. 199, 151–181 (2002).

    ADS 

    Google Scholar 

  • 25.

    Westerlund, K. J. et al. A subduction wedge origin for Paleoarchean peridotitic diamonds and harzburgites from the Panda kimberlite, Slave craton: evidence from Re–Os isotope systematics. Contrib. Mineral. Petrol. 152, 275 (2006).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • 26.

    Hoffman, P. F. United plates of America, the birth of a craton: early Proterozoic assembly and growth of Laurentia. Annu. Rev. Earth Planet. Sci. 16, 543–603 (1988).

    ADS 

    Google Scholar 

  • 27.

    Liu, J. et al. Diamondiferous Paleoproterozoic mantle roots beneath Arctic Canada: a study of mantle xenoliths from Parry Peninsula and Central Victoria Island. Geochim. Cosmochim. Acta 239, 284–311 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 28.

    Schmidberger, S. S. et al. Lu–Hf, in-situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine: evidence for Paleoproterozoic subduction beneath the Slave craton, Canada. Earth Planet. Sci. Lett. 254, 55–68 (2007).

    ADS 
    CAS 

    Google Scholar 

  • 29.

    Ootes, L. et al. Pyroxenitic magma conduits (ca. 1.86 Ga) in Wopmay orogen and Slave craton: petrogenetic constraints from whole rock and mineral chemistry. Lithos 354–355, 105220 (2020).

    Google Scholar 

  • 30.

    McKenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988).

    ADS 
    CAS 

    Google Scholar 

  • 31.

    Ernst, R. E. & Baragar, W. R. A. Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm. Nature 356, 511–513 (1992).

    ADS 

    Google Scholar 

  • 32.

    Mather, K. A., Pearson, D. G., McKenzie, D., Kjarsgaard, B. A. & Priestley, K. Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology. Lithos 125, 729–742 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 33.

    Rudnick, R. L. & Walker, R. J. Interpreting ages from Re-Os isotopes in peridotites. Lithos 112, 1083–1095 (2009).

    ADS 

    Google Scholar 

  • 34.

    Aulbach, S. et al. Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re–Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chem. Geol. 208, 61–88 (2004).

    ADS 
    CAS 

    Google Scholar 

  • 35.

    Pearson, D. G., Canil, D. & Shirey, S. B. in Treatise of Geochemistry 2nd edn, Vol. 3 (Holland, H. D. & Turekian, K. K.) Ch. 3.5, 169–253 (Elsevier, 2014).

  • 36.

    Day, J. M. D., Pearson, D. G. & Hulbert, L. J. Rhenium-osmium isotope and platinum-group element constraints on the origin and evolution of the 1.27 Ga Muskox layered intrusion. J. Petrol. 49, 1255–1295 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 37.

    Thompson, R. N. & Gibson, S. A. Subcontinental mantle plumes, hotspots and pre-existing thinspots. J. Geol. Soc. Lond. 148, 973–977 (1991).

    Google Scholar 

  • 38.

    Stachel, T., Viljoen, K. S., Brey, G. & Harris, J. W. Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth Planet. Sci. Lett. 159, 1–12 (1998).

    ADS 
    CAS 

    Google Scholar 

  • 39.

    Wittig, N. et al. Origin of cratonic lithospheric mantle roots: a geochemical study of peridotites from the North Atlantic Craton, West Greenland. Earth Planet. Sci. Lett. 274, 24–33 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 40.

    Sleep, N. H. Lateral flow and ponding of starting plume material. J. Geophys. Res. Solid Earth 102, 10001–10012 (1997).

    Google Scholar 

  • 41.

    Stachel, T. et al. The Victor Mine (Superior Craton, Canada): Neoproterozoic lherzolitic diamonds from a thermally-modified cratonic root. Mineral. Petrol. 112, 325–336 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 42.

    Hanson, R. E., Martin, M. W., Bowring, S. A. & Munyanyiwa, H. U-Pb zircon age for the Umkondo dolerites, eastern Zimbabwe: 1.1 Ga large igneous province in southern Africa–East Antarctica and possible Rodinia correlations. Geology 26, 1143–1146 (1998).

    ADS 
    CAS 

    Google Scholar 

  • 43.

    Carlson, R. W., Pearson, D. G. & James, D. E. Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys. 43, RG1001 (2005).

    ADS 

    Google Scholar 

  • 44.

    Liu, J. et al. Age and evolution of the deep continental root beneath the central Rae craton, northern Canada. Precambr. Res. 272, 168–184 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 45.

    Griffin, W. L., O’Reilly, S. Y., Afonso, J. C. & Begg, G. C. The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J. Petrol. 50, 1185–1204 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 46.

    Kjarsgaard, B. A. in Decade of North American Geology Vol. P1 (eds Eckstrand, O. R. et al.) 557–566 (Geological Survey of Canada, 1995).

  • 47.

    Steinberger, B. & Becker, T. W. A comparison of lithospheric thickness models. Tectonophysics 746, 325–338 (2018).

    ADS 

    Google Scholar 

  • 48.

    Graham, I. et al. Exploration history and geology of the Diavik kimberlites, Lac de Gras, Northwest Territories, Canada. In Proc. 7th International Kimberlite Conference Vol. 1 (eds Gurney, J. J. et al.) 262–279 (Red Roof Design, 1999).

  • 49.

    Heaman, L. M., Creaser, R. A. & Cookenboo, H. O. Extreme high-field-strength element enrichment in Jericho eclogite xenoliths: a cryptic record of Paleoproterozoic subduction, partial melting and metasomatism beneath the Slave craton, Canada. Geology 30, 507–510 (2002).

    ADS 
    CAS 

    Google Scholar 

  • 50.

    Armstrong, J. P., Fitzgerald, C. E., Kjarsgaard, B. A., Heaman, L. & Tappe, S. Kimberlites of the Coronation Gulf field, northern Slave craton, Nunanvut Canada. In 10th International Kimberlite Conference, Extended Abstracts abstr. 10IKC-170 (2012); https://doi.org/10.29173/ikc3723.

  • 51.

    Heaman, L. M., Kjarsgaard, B. A. & Creaser, R. A. The timing of kimberlite magmatism in North America: implications for global kimberlite genesis and diamond exploration. Lithos 71, 153–184 (2003).

    ADS 
    CAS 

    Google Scholar 

  • 52.

    Kopylova, M. G. & Russell, J. K. Chemical stratification of cratonic lithosphere: constraints from the Northern Slave craton, Canada. Earth Planet. Sci. Lett. 181, 71–87 (2000).

    ADS 
    CAS 

    Google Scholar 

  • 53.

    Boyd, F. R. & Mertzman, S. A. in Magmatic Processes: Physicochemical Principles (ed. Mysen, B. O.) 13–24 (Geochemical Society, 1987).

  • 54.

    Ottley, C. J., Pearson, D. G. & Irvine, G. J. in Plasma Source Mass Spectrometry: Applications and Emerging Technologies (eds Holland, J. G. & Tanner, S. D.) 221–230 (Royal Society of Chemistry, 2003).

  • 55.

    Harris, G. A. et al. Mantle composition, age and geotherm beneath the Darby kimberlite field, west central Rae Craton. Mineral. Petrol. 112, 57–70 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 56.

    Pearson, D. G. & Woodland, S. J. Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd, Ru) and Re-Os isotopes in geological samples by isotope dilution ICP-MS. Chem. Geol. 165, 87–107 (2000).

    ADS 
    CAS 

    Google Scholar 

  • 57.

    Liu, J. & Pearson, D. G. Rapid, precise and accurate Os isotope ratio measurements of nanogram to sub-nanogram amounts using multiple Faraday collectors and amplifiers equipped with 1012 Ω resistors by N-TIMS. Chem. Geol. 363, 301–311 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 58.

    Luguet, A., Nowell, G. M. & Pearson, D. G. Os-184/Os-188 and Os-186/Os-188 measurements by negative thermal ionisation mass spectrometry (N-TIMS): effects of interfering element and mass fractionation corrections on data accuracy and precision. Chem. Geol. 248, 342–362 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 59.

    Grütter, H. S. Pyroxene xenocryst geotherms: techniques and application. Lithos 112 (Suppl. 2) 1167–1178 (2009).

    ADS 

    Google Scholar 

  • 60.

    Lebedev, S., Nolet, G., Meier, T. & Van Der Hilst, R. D. Automated multimode inversion of surface and S waveforms. Geophys. J. Int. 162, 951–964 (2005).

    ADS 

    Google Scholar 

  • 61.

    Lebedev, S. & Van Der Hilst, R. D. Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophys. J. Int. 173, 505–518 (2008).

    ADS 

    Google Scholar 

  • 62.

    Schaeffer, A. J. & Lebedev, S. Global shear speed structure of the upper mantle and transition zone. Geophys. J. Int. 194, 417–449 (2013).

    ADS 

    Google Scholar 

  • 63.

    Moresi, L. N. & Solomatov, V. S. Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids 7, 2154–2162 (1995).

    ADS 
    MATH 

    Google Scholar 

  • 64.

    Zhong, S., Zuber, M. T., Moresi, L. & Gurnis, M. Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res. Solid Earth 105, 11063–11082 (2000).

    Google Scholar 

  • 65.

    van Hunen, J., Zhong, S., Shapiro, N. M. & Ritzwoller, M. H. New evidence for dislocation creep from 3-D geodynamic modeling of the Pacific upper mantle structure. Earth Planet. Sci. Lett. 238, 146–155 (2005).

    ADS 

    Google Scholar 

  • 66.

    Christensen, U. R. & Yuen, D. A. Layered convection induced by phase transitions. J. Geophys. Res. Solid Earth 90, 10291–10300 (1985).

    Google Scholar 

  • 67.

    King, S. D. et al. A community benchmark for 2‐D Cartesian compressible convection in the Earth’s mantle. Geophys. J. Int. 180, 73–87 (2010).

    ADS 

    Google Scholar 

  • 68.

    Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4, 1073 (2003).

    ADS 

    Google Scholar 

  • 69.

    Schutt, D. L. & Lesher, C. E. Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. J. Geophys. Res. Solid Earth 111, B05401 (2006).

    ADS 

    Google Scholar 

  • 70.

    Kennedy, C. S. & Kennedy, G. C. The equilibrium boundary between graphite and diamond. J. Geophys. Res. 81, 2467–2470 (1976).

    ADS 
    CAS 

    Google Scholar 

  • 71.

    Day, H. W. A revised diamond-graphite transition curve. Am. Mineral. 97, 52–62 (2012).

    ADS 
    CAS 

    Google Scholar 

  • 72.

    McDonough, W. F. & Sun, S. S. The Composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    ADS 
    CAS 

    Google Scholar 

  • 73.

    Heaman, L. M., LeCheminant, A. N. & Rainbird, R. H. Nature and timing of Franklin igneous events, Canada: implications for a Late Proterozoic mantle plume and the break-up of Laurentia. Earth Planet. Sci. Lett. 109, 117–131 (1992).

    ADS 
    CAS 

    Google Scholar 

  • 74.

    Mackinder, A., Cousens, B. L., Ernst, R. E. & Chamberlain, K. R. Geochemical, isotopic, and U–Pb zircon study of the central and southern portions of the 780 Ma Gunbarrel Large Igneous Province in western Laurentia. Can. J. Earth Sci. 56, 738–755 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 75.

    Wingate, M., Pirajno, F. & Morris, P. Warakurna large igneous province: a new Mesoproterozoic large igneous province in west-central Australia. Geology 32, 105–108 (2004).

    ADS 

    Google Scholar 

  • 76.

    Fishwick, S. & Reading, A. M. Anomalous lithosphere beneath the Proterozoic of western and central Australia: a record of continental collision and intraplate deformation? Precambr. Res. 166, 111–121 (2008).

    CAS 

    Google Scholar 

  • 77.

    Rudnick, R. & Nyblade, A. A. The thickness and heat production of Archean lithosphere, constraints from xenolith thermobarometry and surface heat flow. Geochem. Soc. Spec. Publ. 6, 3–12 (1999).

    Google Scholar 

  • 78.

    Pidgeon, R. T. & Cook, T. J. F. 1214 ± 5 Ma dyke from the Darling Range, southwestern Yilgarn Craton, Western Australia. Aust. J. Earth Sci. 50, 769–773 (2003).

    ADS 

    Google Scholar 

  • 79.

    Wang, X.-C., Li, Z.-X., Li, J., Pisarevsky, S. A. & Wingate, M. T. D. Genesis of the 1.21 Ga Marnda Moorn large igneous province by plume–lithosphere interaction. Precambr. Res. 241, 85–103 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 80.

    Geissler, W., Sodoudi, F. & Kind, R. Thickness of the Central and Eastern European lithosphere as seen by S receiver functions. Geophys. J. Int. 181, 604–634 (2010).

    ADS 

    Google Scholar 

  • 81.

    Puchkov, V. et al. The ca. 1380 Ma Mashak igneous event of the Southern Urals. Lithos 174, 109–124 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 82.

    Stark, J. C. et al. 1.39 Ga mafic dyke swarm in southwestern Yilgarn Craton marks Nuna to Rodinia transition in the West Australian Craton. Precambr. Res. 316, 291–304 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 83.

    Youbi, N. et al. The 1750Ma Magmatic Event of the West African Craton (Anti-Atlas, Morocco). Precambr. Res. 236, 106–123 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 84.

    Jessell, M., Begg, G. & Miller, M. The geophysical signatures of the West African Craton. Precambr. Res. 274, 3–24 (2016).

    ADS 
    CAS 

    Google Scholar 

  • 85.

    Feng, M., van der Lee, S. & Assumpção, M. Upper mantle structure of South America from joint inversion of waveforms and fundamental mode group velocities of Rayleigh waves. J. Geophys. Res. Solid Earth 112, B04312 (2007).

    ADS 

    Google Scholar 

  • 86.

    Reis, N. J. et al. Avanavero mafic magmatism, a late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U–Pb ID-TIMS baddeleyite, geochemical and paleomagnetic evidence. Lithos 174, 175–195 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 87.

    French, J. E., Heaman, L. M., Chacko, T. & Srivastava, R. K. 1891–1883Ma Southern Bastar–Cuddapah mafic igneous events, India: a newly recognized large igneous province. Precambr. Res. 160, 308–322 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 88.

    Maurya, S. et al. Imaging the lithospheric structure beneath the Indian continent. J. Geophys. Res. Solid Earth 121, 7450–7468 (2016).

    ADS 

    Google Scholar 

  • 89.

    Shellnutt, J. G., Hari, K. R., Liao, A. C. Y., Denyszyn, S. W. & Vishwakarma, N. A. 1.88 Ga giant radiating mafic dyke swarm across southern India and Western Australia. Precambr. Res. 308, 58–74 (2018).

    ADS 
    CAS 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *