Strange India All Strange Things About India and world


  • 1.

    Wara, M. W., Ravelo, A. C. & Delaney, M. L. Permanent El Niño-like conditions during the Pliocene warm period. Science 309, 758–761 (2005).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 2.

    Fedorov, A. V. et al. The Pliocene paradox (mechanisms for a permanent El Niño). Science 312, 1485–1490 (2006).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 3.

    Zhang, Y. G., Pagani, M. & Liu, Z. A 12-million-year temperature history of the tropical Pacific Ocean. Science 344, 84–88 (2014).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 4.

    Fedorov, A. V., Burls, N. J., Lawrence, K. T. & Peterson, L. C. Tightly linked zonal and meridional sea surface temperature gradients over the past five million years. Nat. Geosci. 8, 975–980 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 5.

    Ford, H. L., Ravelo, A. C., Dekens, P. S., LaRiviere, J. P. & Wara, M. W. The evolution of the equatorial thermocline and the early Pliocene El Padre mean state. Geophys. Res. Lett. 42, 4878–4887 (2015).

    Article 
    ADS 

    Google Scholar 

  • 6.

    Tierney, J. E., Haywood, A. M., Feng, R., Bhattacharya, T. & Otto‐Bliesner, B. L. Pliocene warmth consistent with greenhouse gas forcing. Geophys. Res. Lett. 46, 9136–9144 (2019).

    Article 
    ADS 

    Google Scholar 

  • 7.

    Lawrence, K. T., Liu, Z. & Herbert, T. D. Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. Science 312, 79–83 (2006).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 8.

    Dekens, P. S., Ravelo, A. C. & McCarthy, M. D. Warm upwelling regions in the Pliocene warm period. Paleoceanography 22, PA3211 (2007).

    Article 
    ADS 

    Google Scholar 

  • 9.

    Ford, H. L., Ravelo, A. C. & Hovan, S. A deep Eastern Equatorial Pacific thermocline during the early Pliocene warm period. Earth Planet. Sci. Lett. 355, 152–161 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • 10.

    Fedorov, A. V. et al. Patterns and mechanisms of early Pliocene warmth. Nature 496, 43–49 (2013).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 11.

    O’Brien, C. L. et al. High sea surface temperatures in tropical warm pools during the Pliocene. Nat. Geosci. 7, 606–611 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • 12.

    Ravelo, A. C., Lawrence, K. T., Fedorov, A. & Ford, H. L. Comment on “A 12-million-year temperature history of the tropical Pacific Ocean”. Science 346, 1467 (2014).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 13.

    Lyle, M. Neogene carbonate burial in the Pacific Ocean. Paleoceanography 18, 1059 (2003).

    Article 
    ADS 

    Google Scholar 

  • 14.

    Lyle, M. & Baldauf, J. Biogenic sediment regimes in the Neogene equatorial Pacific, IODP Site U1338: burial, production, and diatom community. Palaeogeogr. Palaeoclimatol. Palaeoecol. 433, 106–128 (2015).

    Article 

    Google Scholar 

  • 15.

    Ma, Z., Ravelo, A. C., Liu, Z., Zhou, L. & Paytan, A. Export production fluctuations in the eastern equatorial Pacific during the Pliocene‐Pleistocene: reconstruction using barite accumulation rates. Paleoceanography 30, 1455–1469 (2015).

    Article 
    ADS 

    Google Scholar 

  • 16.

    Burls, N. J. et al. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene. Sci. Adv. 3, e1700156 (2017).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 17.

    Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev 97, 163–172 (1969).

    Article 
    ADS 

    Google Scholar 

  • 18.

    Philander, S. G. El Niño, La Niña, and the southern oscillation. Int. Geophys. Ser. 46, 289 (1989).

    Google Scholar 

  • 19.

    Iizumi, T. et al. Impacts of El Niño SOUTHERN OSCILLATION on the global yields of major crops. Nat. Commun. 5, 3712 (2014).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 20.

    Anderson, W., Seager, R., Baethgen, W. & Cane, M. Crop production variability in North and South America forced by life-cycles of the El Niño Southern Oscillation. Agric. For. Meteorol. 239, 151–165 (2017).

    Article 
    ADS 

    Google Scholar 

  • 21.

    Heede, U. K., Fedorov, A. V. & Burls, N. J. Time scales and mechanisms for the tropical Pacific response to global warming: a tug of war between the ocean thermostat and weaker Walker. J. Clim. 33, 6101–6118 (2020).

    Article 
    ADS 

    Google Scholar 

  • 22.

    Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 23.

    Haywood, A. M. et al. Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Clim. Past 9, 191–209 (2013).

    Article 

    Google Scholar 

  • 24.

    Haywood, A. M., Dowsett, H. J. & Dolan, A. M. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat. Commun. 7, 10646 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 25.

    Prescott, C. L. et al. Assessing orbitally-forced interglacial climate variability during the mid-Pliocene warm period. Earth Planet. Sci. Lett. 400, 261–271 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 26.

    Haywood, A. M. et al. The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity. Clim. Past 16, 2095–2123 (2020).

    Article 

    Google Scholar 

  • 27.

    Brierley, C. M. & Fedorov, A. V. Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene‐Pleistocene climate evolution. Paleoceanography 25, PA2214 (2010).

    Article 
    ADS 

    Google Scholar 

  • 28.

    McClymont, E. L. et al. Lessons from a high-CO2 world: an ocean view from 3 million years ago. Clim. Past 16, 1599–1615 (2020).

    Article 

    Google Scholar 

  • 29.

    Burls, N. J. et al. Simulating Miocene warmth: insights from an opportunistic multi-model ensemble (MioMIP1). Paleoceanogr. Paleoclimatology 36, e2020PA004054 (2021).

    Article 

    Google Scholar 

  • 30.

    Ravelo, A. C., Dekens, P. S. & McCarthy, M. Evidence for El Niño-like conditions during the Pliocene. GSA Today 16, 4–11 (2006).

    Google Scholar 

  • 31.

    Liu, J. et al. Eastern equatorial Pacific cold tongue evolution since the late Miocene linked to extratropical climate. Sci. Adv. 5, eaau6060 (2019).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 32.

    Wycech, J. B., Gill, E., Rajagopalan, B., Marchitto, T. M. Jr & Molnar, P. H. Multiproxy reduced‐dimension reconstruction of Pliocene equatorial Pacific sea surface temperatures. Paleoceanogr. Paleoclimatology 35, e2019PA003685 (2020).

    Google Scholar 

  • 33.

    White, S. M. & Ravelo, A. C. The benthic B/Ca record at Site 806: new constraints on the temperature of the West Pacific Warm Pool and the “El Padre” state in the Pliocene. Paleoceanogr. Paleoclimatology 35, e2019PA003812 (2020).

    Article 

    Google Scholar 

  • 34.

    Rae, J. W. B., Foster, G. L., Schmidt, D. N. & Elliott, T. Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system. Earth Planet. Sci. Lett. 302, 403–413 (2011).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 35.

    Rae, J. W. B. in Boron Isotopes (eds. Marschall, H. & Foster, G.) 107–143 (Springer, 2018).

  • 36.

    Henehan, M. J. et al. A new boron isotope-pH calibration for Orbulina universa, with implications for understanding and accounting for ‘vital effects’. Earth Planet. Sci. Lett. 454, 282–292 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 37.

    Takahashi, T. et al. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res. Part II Top. Stud. Oceanogr. 56, 554–577 (2009).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 38.

    Burls, N. J. & Fedorov, A. V. Simulating Pliocene warmth and a permanent El Niño‐like state: the role of cloud albedo. Paleoceanography 29, 893–910 (2014).

    Article 
    ADS 

    Google Scholar 

  • 39.

    Burls, N. J. & Fedorov, A. V. What controls the mean east–west sea surface temperature gradient in the equatorial Pacific: the role of cloud albedo. J. Clim. 27, 2757–2778 (2014).

    Article 
    ADS 

    Google Scholar 

  • 40.

    Dowsett, H. J. et al. Sea surface temperature of the mid-Piacenzian ocean: a data-model comparison. Sci. Rep. 3, 2013 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Brierley, C., Burls, N., Ravelo, C. & Fedorov, A. Pliocene warmth and gradients. Nat. Geosci. 8, 419–420 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 42.

    Sautter, L. R. & Thunell, R. C. Planktonic foraminiferal response to upwelling and seasonal hydrographic conditions; sediment trap results from San Pedro Basin, Southern California Bight. J. Foraminifer. Res. 21, 347–363 (1991).

    Article 

    Google Scholar 

  • 43.

    Rebotim, A. et al. Factors controlling the depth habitat of planktonic foraminifera in the subtropical eastern North Atlantic. Biogeosciences 14, 827–859 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 44.

    Buckley, M. W. & Marshall, J. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review. Rev. Geophys. 54, 5–63 (2016).

    Article 
    ADS 

    Google Scholar 

  • 45.

    Thomas, M. D. & Fedorov, A. V. The eastern subtropical Pacific origin of the equatorial cold bias in climate models: a Lagrangian perspective. J. Clim. 30, 5885–5900 (2017).

    Article 
    ADS 

    Google Scholar 

  • 46.

    Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J. & Manabe, S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249 (1998).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 47.

    Fedorov, A. V., Brierley, C. M. & Emanuel, K. Tropical cyclones and permanent El Niño in the early Pliocene epoch. Nature 463, 1066–1070 (2010).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 48.

    Christensen, V., De la Puente, S., Sueiro, J. C., Steenbeek, J. & Majluf, P. Valuing seafood: the Peruvian fisheries sector. Mar. Policy 44, 302–311 (2014).

    Article 

    Google Scholar 

  • 49.

    Gutierrez, D., Akester, M. & Naranjo, L. Productivity and sustainable management of the Humboldt Current large marine ecosystem under climate change. Environ. Dev. 17, 126–144 (2016).

    Article 

    Google Scholar 

  • 50.

    Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Chang. 6, 360–369 (2016).

    Article 
    ADS 

    Google Scholar 

  • 51.

    Martínez-Botí, M. A. et al. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518, 49–54 (2015).

    PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • 52.

    Mayer, L. A. et al. Proceedings of the Ocean Drilling Program: Initial Reports Vol. 138 (Ocean Drilling Program, 1992).

  • 53.

    Kroenke, L. W. et al. Proceedings of the Ocean Drilling Program: Initial Reports Vol. 130 (Ocean Drilling Program, 1991).

  • 54.

    Edgar, K. M., Anagnostou, E., Pearson, P. N. & Foster, G. L. Assessing the impact of diagenesis on δ11B, δ13C, δ18O, Sr/Ca and B/Ca values in fossil planktic foraminiferal calcite. Geochim. Cosmochim. Acta 166, 189–209 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 55.

    Foster, G. L., Lear, C. H. & Rae, J. W. B. The evolution of pCO2, ice volume and climate during the middle Miocene. Earth Planet. Sci. Lett. 341, 243–254 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • 56.

    Penman, D. E., Hönisch, B., Zeebe, R. E., Thomas, E. & Zachos, J. C. Rapid and sustained surface ocean acidification during the Paleocene‐Eocene thermal maximum. Paleoceanography 29, 357–369 (2014).

    Article 
    ADS 

    Google Scholar 

  • 57.

    Hönisch, B. & Hemming, N. G. Ground‐truthing the boron isotope‐paleo‐pH proxy in planktonic foraminifera shells: partial dissolution and shell size effects. Paleoceanography 19, PA4010 (2004).

    Article 
    ADS 

    Google Scholar 

  • 58.

    Chaisson, W. P. & Ravelo, A. C. Pliocene development of the east‐west hydrographic gradient in the equatorial Pacific. Paleoceanography 15, 497–505 (2000).

    Article 
    ADS 

    Google Scholar 

  • 59.

    Karnauskas, K. B., Mittelstaedt, E. & Murtugudde, R. Paleoceanography of the eastern equatorial Pacific over the past 4 million years and the geologic origins of modern Galapagos upwelling. Earth Planet. Sci. Lett. 460, 22–28 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 60.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, (2005).

  • 61.

    Zhang, Y. G., Pagani, M., Henderiks, J. & Ren, H. A long history of equatorial deep-water upwelling in the Pacific Ocean. Earth Planet. Sci. Lett. 467, 1–9 (2017).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 62.

    Ogg, J. G., Gradstein, F. M. & Smith, A. G. (eds.) A Geologic Time Scale 2004 (Cambridge Univ. Press, 2004).

  • 63.

    Spezzaferri, S. et al. Fossil and genetic evidence for the polyphyletic nature of the planktonic foraminifera “Globigerinoides“, and description of the new genus Trilobatus. PLoS ONE 10, e0128108 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Martínez-Botí, M. A. et al. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation. Nature 518, 219–222 (2015).

    PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • 65.

    Key, R. M. et al. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochem. Cycles 18, GB4031 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • 66.

    Olsen, A. et al. GLODAPv2. 2020–the second update of GLODAPv2. Earth Syst. Sci. Data 12, 3653–3678 (2020).

    Article 
    ADS 

    Google Scholar 

  • 67.

    Suzuki, T. et al. PACIFICA Data Synthesis Project (Carbon Dioxide Information Analysis Center, 2013).

  • 68.

    Schlitzer, R. Electronic atlas of WOCE hydrographic and tracer data now available. Eos Trans. 81, 45 (2000).

    Article 
    ADS 

    Google Scholar 

  • 69.

    Schlitzer, R. Ocean Data View. (2018). Available at: https://www.odv.awi.de.

  • 70.

    Dickson, A. G., Sabine, C. L. & Christian, J. R. Guide to Best Practices for Ocean CO2Measurements (North Pacific Marine Science Organization, 2007).

  • 71.

    Lewis, E. R. & Wallace, D. W. R. Program Developed for CO2System Calculations (Environmental System Science Data Infrastructure for a Virtual Ecosystem, 1998).

  • 72.

    Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Article 
    ADS 

    Google Scholar 

  • 73.

    NOAA Climate Prediction Center Internet Team. Cold and Warm Episodes by Season. (2021). Available at: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php. (Accessed: 22 March 2021)

  • 74.

    Zeebe, R. E. & Tyrrell, T. History of carbonate ion concentration over the last 100 million years II: revised calculations and new data. Geochim. Cosmochim. Acta 257, 373–392 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 75.

    Foster, G. L. Seawater pH, pCO2 and [CO2−3] variations in the Caribbean Sea over the last 130 kyr: a boron isotope and B/Ca study of planktic foraminifera. Earth Planet. Sci. Lett. 271, 254–266 (2008).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 76.

    Kiss, E. Ion-exchange separation and spectrophotometric determination of boron in geological materials. Anal. Chim. Acta 211, 243–256 (1988).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Okai, T., Suzuki, A., Kawahata, H., Terashima, S. & Imai, N. Preparation of a new Geological Survey of Japan geochemical reference material: Coral JCp‐1. Geostand. Newsl. 26, 95–99 (2002).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Al-Ammar, A. S., Gupta, R. K. & Barnes, R. M. Elimination of boron memory effect in inductively coupled plasma-mass spectrometry by ammonia gas injection into the spray chamber during analysis. Spectrochim. Acta Part B At. Spectrosc. 55, 629–635 (2000).

    Article 
    ADS 

    Google Scholar 

  • 79.

    Berner, E. K. & Berner, R. A. Global Environment: Water, Air, and Geochemical Cycles (Prentice-Hall, 1996).

  • 80.

    Broecker, W. S. & Peng, T. S. Tracers in the Sea (Eldigio, 1982).

  • 81.

    Fantle, M. S. & DePaolo, D. J. Sr isotopes and pore fluid chemistry in carbonate sediment of the Ontong Java Plateau: calcite recrystallization rates and evidence for a rapid rise in seawater Mg over the last 10 million years. Geochim. Cosmochim. Acta 70, 3883–3904 (2006).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 82.

    Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A. & Demicco, R. V. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science 294, 1086–1088 (2001).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 83.

    Horita, J., Zimmermann, H. & Holland, H. D. Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites. Geochim. Cosmochim. Acta 66, 3733–3756 (2002).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 84.

    Chalk, T. B. et al. Causes of ice age intensification across the mid-Pleistocene transition. Proc. Natl Acad. Sci. USA 114, 13114–13119 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 85.

    Greenop, R. et al. Orbital forcing, ice volume, and CO2 across the Oligocene‐Miocene transition. Paleoceanogr. Paleoclimatology 34, 316–328 (2019).

    Article 
    ADS 

    Google Scholar 

  • 86.

    Sosdian, S. M., Babila, T. L., Greenop, R., Foster, G. L. & Lear, C. H. Ocean carbon storage across the middle Miocene: a new interpretation for the Monterey event. Nat. Commun. 11, 134 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 87.

    Evans, D. & Müller, W. Deep time foraminifera Mg/Ca paleothermometry: nonlinear correction for secular change in seawater Mg/Ca. Paleoceanography 27, PA4205 (2012).

    Article 
    ADS 

    Google Scholar 

  • 88.

    Tierney, J. E., Malevich, S. B., Gray, W., Vetter, L. & Thirumalai, K. Bayesian calibration of the Mg/Ca paleothermometer in planktic foraminifera. Paleoceanogr. Paleoclimatology 34, 2005–2030 (2019).

    Article 
    ADS 

    Google Scholar 

  • 89.

    Anand, P., Elderfield, H. & Conte, M. H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography 18, 1050 (2003).

    Article 
    ADS 

    Google Scholar 

  • 90.

    Gray, W. R. et al. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean. Nat. Geosci. 11, 340–344 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 91.

    Lemarchand, D., Gaillardet, J., Lewin, E. & Allegre, C. J. Boron isotope systematics in large rivers: implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic. Chem. Geol. 190, 123–140 (2002).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 92.

    Simon, L., Lécuyer, C., Maréchal, C. & Coltice, N. Modelling the geochemical cycle of boron: implications for the long-term δ11B evolution of seawater and oceanic crust. Chem. Geol. 225, 61–76 (2006).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 93.

    Greenop, R. et al. A record of Neogene seawater δ11B reconstructed from paired δ11B analyses on benthic and planktic foraminifera. Clim. Past 13, 149–170 (2017).

    Article 

    Google Scholar 

  • 94.

    Foster, G. L., Pogge von Strandmann, P. A. E. & Rae, J. W. B. Boron and magnesium isotopic composition of seawater. Geochem. Geophys. Geosystems 11, Q08015 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • 95.

    Shields, C. A. et al. The low-resolution CCSM4. J. Clim. 25, 3993–4014 (2012).

    Article 
    ADS 

    Google Scholar 

  • 96.

    Moore, J. K., Doney, S. C. & Lindsay, K. Upper ocean ecosystem dynamics and iron cycling in a global three‐dimensional model. Global Biogeochem. Cycles 18, GB4028 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • 97.

    Tan, I., Storelvmo, T. & Zelinka, M. D. Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science 352, 224–227 (2016).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 98.

    Erfani, E. & Burls, N. J. The strength of low-cloud feedbacks and tropical climate: a CESM sensitivity study. J. Clim. 32, 2497–2516 (2019).

    Article 
    ADS 

    Google Scholar 

  • 99.

    Li, R. L., Storelvmo, T., Fedorov, A. V. & Choi, Y.-S. A positive IRIS feedback: insights from climate simulations with temperature-sensitive cloud–rain conversion. J. Clim. 32, 5305–5324 (2019).

    Article 
    ADS 

    Google Scholar 

  • 100.

    Mauritsen, T. & Stevens, B. Missing iris effect as a possible cause of muted hydrological change and high climate sensitivity in models. Nat. Geosci. 8, 346–351 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 101.

    Williams, I. N. & Pierrehumbert, R. T. Observational evidence against strongly stabilizing tropical cloud feedbacks. Geophys. Res. Lett. 44, 1503–1510 (2017).

    Article 
    ADS 

    Google Scholar 

  • 102.

    Sagoo, N. & Storelvmo, T. Testing the sensitivity of past climates to the indirect effects of dust. Geophys. Res. Lett. 44, 5807–5817 (2017).

    Article 
    ADS 

    Google Scholar 

  • 103.

    Thomas, M. D., Fedorov, A. V., Burls, N. J. & Liu, W. Oceanic pathways of an active Pacific meridional overturning circulation (PMOC). Geophys. Res. Lett. 48, e2020GL091935 (2021).

    ADS 

    Google Scholar 

  • 104.

    Blanke, B. & Raynaud, S. Kinematics of the Pacific equatorial undercurrent: an Eulerian and Lagrangian approach from GCM results. J. Phys. Oceanogr. 27, 1038–1053 (1997).

    Article 
    ADS 

    Google Scholar 

  • 105.

    Gent, P. R. & Mcwilliams, J. C. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–155 (1990).

    Article 
    ADS 

    Google Scholar 

  • 106.

    Van Sebille, E. et al. Lagrangian ocean analysis: fundamentals and practices. Ocean Model. 121, 49–75 (2018). 

  • 107.

    Arakawa, A. & Lamb, V. R. Computational design of the basic dynamical processes of the UCLA general circulation model. Gen. Circ. Model. Atmos. 17, 173–265 (1977).

    Google Scholar 

  • 108.

    Marshall, B. J. et al. Morphometric and stable isotopic differentiation of Orbulina universa morphotypes from the Cariaco Basin, Venezuela. Mar. Micropaleontol. 120, 46–64 (2015).

    Article 
    ADS 

    Google Scholar 

  • 109.

    Raitzsch, M. et al. Boron isotope-based seasonal paleo-pH reconstruction for the Southeast Atlantic – a multispecies approach using habitat preference of planktonic foraminifera. Earth Planet. Sci. Lett. 487, 138–150 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 110.

    Guillermic, M. et al. Seawater pH reconstruction using boron isotopes in multiple planktonic foraminifera species with different depth habitats and their potential to constrain pH and pCO2 gradients. Biogeosciences 17, 3487–3510 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 111.

    Bartoli, G., Hönisch, B. & Zeebe, R. E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations. Paleoceanography 26, PA4213 (2011).

    Article 
    ADS 

    Google Scholar 

  • 112.

    Hönisch, B., Hemming, N. G., Archer, D., Siddall, M. & McManus, J. F. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324, 1551–1554 (2009).

    PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 113.

    Seki, O. et al. Alkenone and boron-based Pliocene pCO2 records. Earth Planet. Sci. Lett. 292, 201–211 (2010).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 114.

    Sosdian, S. M. et al. Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy. Earth Planet. Sci. Lett. 498, 362–376 (2018).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 115.

    de la Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R. P. & Foster, G. L. Atmospheric CO2 during the mid-Piacenzian warm period and the M2 glaciation. Sci. Rep. 10, 11002 (2020).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 116.

    Medina-Elizalde, M. & Lea, D. W. The mid-Pleistocene transition in the tropical Pacific. Science 310, 1009–1012 (2005).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 117.

    Liu, Z. & Herbert, T. D. High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch. Nature 427, 720–723 (2004).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 118.

    Regenberg, M. et al. Global dissolution effects on planktonic foraminiferal Mg/Ca ratios controlled by the calcite‐saturation state of bottom waters. Paleoceanography 29, 127–142 (2014).

    Article 
    ADS 

    Google Scholar 

  • 119.

    Pagani, M., Liu, Z., LaRiviere, J. & Ravelo, A. C. High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nat. Geosci. 3, 27–30 (2010).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 120.

    Conte, M. H. et al. Global temperature calibration of the alkenone unsaturation index (UK′ 37) in surface waters and comparison with surface sediments. Geochem. Geophys. Geosystems 7, Q02005 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • 121.

    Kim, J.-H. et al. New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochim. Cosmochim. Acta 74, 4639–4654 (2010).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 122.

    Evans, D., Brierley, C., Raymo, M. E., Erez, J. & Müller, W. Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene–Pleistocene seawater Mg/Ca, temperature and sea level change. Earth Planet. Sci. Lett. 438, 139–148 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 123.

    Coggon, R. M., Teagle, D. A. H., Smith-Duque, C. E., Alt, J. C. & Cooper, M. J. Reconstructing past seawater Mg/Ca and Sr/Ca from mid-ocean ridge flank calcium carbonate veins. Science 327, 1114–1117 (2010).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 124.

    Rausch, S., Böhm, F., Bach, W., Klügel, A. & Eisenhauer, A. Calcium carbonate veins in ocean crust record a threefold increase of seawater Mg/Ca in the past 30 million years. Earth Planet. Sci. Lett. 362, 215–224 (2013).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 125.

    Dekens, P. S., Lea, D. W., Pak, D. K. & Spero, H. J. Core top calibration of Mg/Ca in tropical foraminifera: refining paleotemperature estimation. Geochemistry, Geophys. Geosystems 3, 1–29 (2002).

    Article 

    Google Scholar 

  • 126.

    Müller, P. J., Kirst, G., Ruhland, G., Von Storch, I. & Rosell-Melé, A. Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60° N-60° S). Geochim. Cosmochim. Acta 62, 1757–1772 (1998).

    Article 
    ADS 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *