Strange IndiaStrange India


  • Cabernard, L., Pfister, S., Oberschelp, C. & Hellweg, S. Growing environmental footprint of plastics driven by coal combustion. Nat. Sustain. https://doi.org/10.1038/s41893-021-00807-2 (2021).

  • IEA. The future of petrochemicals. https://www.iea.org/reports/the-future-of-petrochemicals (2018).

  • Geyer, R., Jambeck, J. & Law, K. Production, use, and fate of all plastics ever made. Sci. Adv. 3, 25–29 (2017).

    Article 

    Google Scholar 

  • Andrady, A. L. & Neal, M. A. Applications and societal benefits of plastics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1977–1984 (2009).

    Article 
    CAS 

    Google Scholar 

  • Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 9, 374–378 (2019).

    Article 
    ADS 

    Google Scholar 

  • Lau, W. W. Y. et al. Evaluating scenarios toward zero plastic pollution. Science 369, 1455–1461 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bazzanella, A. M. & Ausfelder, F. Low carbon energy and feedstock for the European chemical industry. https://cefic.org/app/uploads/2019/01/Low-carbon-energy-and-feedstock-for-the-chemical-industry-DECHEMA_Report-energy_climate.pdf (2017).

  • Carus, M., Dammer, L., Raschka, A. & Skoczinski, P. Renewable carbon: key to a sustainable and future-oriented chemical and plastic industry: definition, strategy, measures and potential. Greenhouse Gases Sci. Tech. 10, 488–505 (2020).

  • Meys, R. et al. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science 374, 71–76 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stegmann, P., Londo, M. & Junginger, M. The circular bioeconomy: its elements and role in European bioeconomy clusters. Resour. Conserv. Recycl. 6, 100029 (2020).

  • de Oliveira, C. C. N., Zotin, M. Z., Rochedo, P. R. R. & Szklo, A. Achieving negative emissions in plastics life cycles through the conversion of biomass feedstock. Biofuel. Bioprod. Biorefin. https://doi.org/10.1002/bbb.2165 (2020).

  • IAMCwiki. The common Integrated Assessment Model (IAM) documentation. https://www.iamcdocumentation.eu/index.php/IAMC_wiki (2021).

  • Stegmann, P., Daioglou, V., Londo, M. & Junginger, M. The plastics integrated assessment model (PLAIA): assessing emission mitigation pathways and circular economy strategies for the plastics sector. MethodsX 9, 101666 (2022).

    Article 
    CAS 

    Google Scholar 

  • Stehfest, E. et al. Integrated Assessment of Global Environmental Change with IMAGE 3.0 – model description and policy applications. https://www.pbl.nl/en/publications/integrated-assessment-of-global-environmental-change-with-IMAGE-3.0 (2014).

  • O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Article 

    Google Scholar 

  • IEA. Global Energy Review 2021 – assessing the effects of economic recoveries on global energy demand and CO2 emissions in 2021. https://www.iea.org/reports/global-energy-review-2021 (2021).

  • Yang, Y. et al. Progress in coal chemical technologies of China. Rev. Chem. Eng. https://doi.org/10.1515/revce-2017-0026 (2019).

  • Zhang, Y. et al. Intensive carbon dioxide emission of coal chemical industry in China. Appl. Energy 236, 540–550 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • United States Environmental Protection Agency. Inventory of U.S. greenhouse gas emissions and sinks. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks (2021).

  • Levi, P. G. & Cullen, J. M. Mapping global flows of chemicals: from fossil fuel feedstocks to chemical products. Environ. Sci. Technol. 52, 1725–1734 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chamas, A. et al. Degradation rates of plastics in the environment.ACS Sustain. Chem. Eng. 8, 3494–3511 (2020).

    Article 
    CAS 

    Google Scholar 

  • Silpa, K., Yao, L., Bhada-Tata, P. & Woerden, F. V. What a Waste 2.0 – a global snapshot of solid waste management to 2050. http://hdl.handle.net/10986/30317 (2018).

  • Eggleston H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (2006).

  • IPCC. Global warming of 1.5 °C. https://www.ipcc.ch/sr15/ (2018).

  • Silva, A. L. P. et al. Microplastics in landfill leachates: the need for reconnaissance studies and remediation technologies. Case Stud. Chem. Environ. Eng. 3, 100072 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ellen MacArthur Foundation. The new plastics economy: catalysing action. https://ellenmacarthurfoundation.org/the-new-plastics-economy-catalysing-action (2017).

  • Qureshi, M. S. et al. Pyrolysis of plastic waste: opportunities and challenges. J. Anal. Appl. Pyrolysis 152, 104804 (2020).

  • UN Environment Programme. Renewables 2021 Global Status Report. https://www.unep.org/resources/report/renewables-2021-global-status-report (2021).

  • Wienchol, P., Szlęk, A. & Ditaranto, M. Waste-to-energy technology integrated with carbon capture – challenges and opportunities. Energy 198, 117352 (2020).

  • Simon, J. M. & Martin, S. El Dorado of chemical recycling – state of play and policy challenges. https://zerowasteeurope.eu/2019/08/press-release-el-dorado-of-chemical-recycling (2019).

  • Stegmann, P. & Daioglou, V. The Plastics Integrated Assessment Model (PLAIA) (version 1.0). Zenodo https://doi.org/10.5281/zenodo.7022953 (2022).

  • Daioglou, V., Wicke, B., Faaij, A. P. C. & van Vuuren, D. P. Competing uses of biomass for energy and chemicals: implications for long-term global CO2 mitigation potential. GCB Bioenergy 7, 1321–1334 (2015).

    Article 
    CAS 

    Google Scholar 

  • PBL. IMAGE – integrated Model to Assess the Global Environment. https://www.pbl.nl/en/image/home (2020).

  • van Vuuren, D. et al. The 2021 SSP scenarios of the IMAGE 3.2 model. https://www.pbl.nl/en/publications/the-2021-ssp-scenarios-of-the-image-32-model (2021).

  • Daioglou, V., Doelman, J., Wicke, B., Faaij, A. & van Vuuren, D. P. Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Glob. Environ. Change 54, 88–101 (2019).

  • Daioglou, V. et al. Energy demand and emissions of the non-energy sector. Energy Environ. Sci. 7, 482–498 (2014).

    Article 
    CAS 

    Google Scholar 

  • Oil & Gas Journal. Worldwide refining survey. https://www.ogj.com/ogj-survey-downloads/worldwide-refining (1996–2010).

  • Oil & Gas Journal. International Survey of Ethylene from steam crackers. https://www.ogj.com/ogj-survey-downloads/ethylene-report (1997–2012).

  • Methanol Institute. Global methanol capacity. https://www.methanol.org/methanol-price-supply-demand/ (2013).

  • CPME. An eco-profile and environmental product declaration of the PET manufacturers in Europe: polyethylene terephthalate (PET) (bottle grade). https://legacy.plasticseurope.org/application/files/4915/2050/2706/CPME_Eco-profile_PET_bottle_grade.zip (2017).

  • PlasticsEurope. Vinyl chloride (VCM) and polyvinyl chloride (PVC). Eco-profiles and environmental product declarations of the European plastics manufacturers. https://legacy.plasticseurope.org/application/files/1015/1783/7791/20170515170642-plasticseurope_epd_vcm_2015-update_water_2016.zip (2016).

  • PlasticsEurope. High-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE). Eco-profiles and environmental product declarations of the European plastics manufacturers. https://legacy.plasticseurope.org/application/files/3915/1783/7782/20170515174444-plasticseurope_eco-profile_pe_2014-update_water_2016.zip (2016).

  • PlasticsEurope. Polypropylene (PP). Eco-profiles and environmental product declarations of the European plastics manufacturers. https://legacy.plasticseurope.org/application/files/1015/1783/7790/20170515174825-plasticseurope_eco-profile_pp_2014-update_water_2016.zip (2016).

  • Keoleian, G., Miller, S., Kleine, R. D., Fang, A. & Mosley, J. Life cycle material data update for GREET model. https://greet.es.anl.gov/files/greet2-lca-update (2012).

  • Hestin, M., Faninger, T. & Milios, L. Increased EU plastics recycling targets: environmental, economic and social impact assessment. https://www.plasticsrecyclers.eu/_files/ugd/0af79c_d3c616e926e24896a8b82b833332242e.pdf (2015).

  • Wong, S. L., Ngadi, N., Abdullah, T. A. T. & Inuwa, I. M. Current state and future prospects of plastic waste as source of fuel: a review. Renew. Sustain. Energy Rev. 50, 1167–1180 (2015).

    Article 
    CAS 

    Google Scholar 

  • Rigamonti, L. et al. Environmental evaluation of plastic waste management scenarios. Resour. Conserv. Recycl. 85, 42–53 (2014).

    Article 

    Google Scholar 

  • European Commission. Environmental impact assessments of innovative bio-based product. https://op.europa.eu/en/publication-detail/-/publication/15bb40e3-3979-11e9-8d04-01aa75ed71a1 (2018)

  • Royer, S.-J., Ferron, S., Wilson, S. T. & Karl, D. M. Production of methane and ethylene from plastic in the environment. PLoS ONE 13, e0200574 (2018).

  • Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).

    Article 

    Google Scholar 

  • van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).

    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *