Strange IndiaStrange India


  • 1.

    Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334–1336 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Rapp, R. P. & Watson, E. B. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J. Petrol. 36, 891–931 (1995).

    ADS 
    CAS 

    Google Scholar 

  • 3.

    Martin, H., Smithies, R. H., Rapp, R., Moyen, J.-F. & Champion, D. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 1–24 (2005).

    ADS 
    CAS 

    Google Scholar 

  • 4.

    Johnson, T. E., Brown, M., Kaus, B. J. P. & VanTongeren, J. A. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat. Geosci. 7, 47–52 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 5.

    Martin, H., Moyen, J.-F., Guitreau, M., Blichert-Toft, J. & Le Pennec, J.-L. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos 198–199, 1–13 (2014).

    ADS 

    Google Scholar 

  • 6.

    Johnson, T. E., Brown, M., Gardiner, N. J., Kirkland, C. L. & Smithies, R. H. Earth’s first stable continents did not form by subduction. Nature 543, 239–242 (2017); correction 545, 510 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    King, E. M., Valley, J. W., Davis, D. W. & Edwards, G. R. Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province: indicator of magmatic source. Precambr. Res. 92, 365–387 (1998).

    ADS 
    CAS 

    Google Scholar 

  • 8.

    Valley, J. W. et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 150, 561–580 (2005).

    ADS 
    CAS 

    Google Scholar 

  • 9.

    Smithies, R. H., Champion, D. C. & Van Kranendonk, M. J. Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt. Earth Planet. Sci. Lett. 281, 298–306 (2009).

    ADS 
    CAS 

    Google Scholar 

  • 10.

    Hickman, A. H. & Van Kranendonk, M. J. Early Earth evolution: evidence from the 3.5–1.8 Ga geological history of the Pilbara region of Western Australia. Episodes 35, 283–297 (2012).

    Google Scholar 

  • 11.

    François, C., Philippot, P., Rey, P. & Rubatto, D. Burial and exhumation during Archean sagduction in the East Pilbara granite–greenstone terrane. Earth Planet. Sci. Lett. 396, 235–251 (2014).

    ADS 

    Google Scholar 

  • 12.

    Van Kranendonk, M. J. et al. Making it thick: a volcanic plateau origin of Palaeoarchean continental lithosphere of the Pilbara and Kaapvaal cratons. In Continent Formation Through Time Geological Society Special Publication No. 389 (eds Roberts, N. M. W. et al.) 83–111 (The Geological Society of London, 2015).

  • 13.

    Wiemer, D., Schrank, C. E., Murphy, D. T., Wenham, L. & Allen, C. M. Earth’s oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns. Nat. Geosci. 11, 357–361 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 14.

    Byerly, B., Kareem, K., Bao, H. & Byerly, G. R. Early Earth mantle heterogeneity revealed by light oxygen isotopes of Archaean komatiites. Nat. Geosci. 10, 871–875 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 15.

    Debaille, V. et al. Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet. Sci. Lett. 373, 83–92 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 16.

    Bédard, J. H. Stagnant lids and mantle overturns: implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci. Front. 9, 19–49 (2018).

    ADS 

    Google Scholar 

  • 17.

    Hawkesworth, C. J. & Brown, M. Earth dynamics and the development of plate tectonics. Phil. Trans. R. Soc. A. 376, 20180228 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Nebel, O. et al. When crust comes of age: on the chemical evolution of Archaean, felsic continental crust by crustal drip tectonics. Phil. Trans. R. Soc. A. 376, 20180103 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Cawood, P., Kröner, A. & Pisarevsky, S. Precambrian plate tectonics: criteria and evidence. GSA Today 16, 4–11 (2006).

    Google Scholar 

  • 20.

    Harrison, T. M., Schmitt, A. K., McCulloch, M. T. & Lovera, O. M. Early (≥4.5 Ga) formation of terrestrial crust: Lu–Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth Planet. Sci. Lett. 268, 476–486 (2008).

    ADS 
    CAS 

    Google Scholar 

  • 21.

    Bindeman, I. N. & Valley, J. W. Low-δ18O rhyolites from Yellowstone: magmatic evolution based on analyses of zircons and individual phenocrysts. J. Petrol. 42, 1491–1517 (2001).

    ADS 
    CAS 

    Google Scholar 

  • 22.

    Petersson, A. et al. A new 3.59 Ga magmatic suite and a chondritic source to the east Pilbara Craton. Chem. Geol. 511, 51–70 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 23.

    Ge, R. et al. Generation of Eoarchean continental crust from altered mafic rocks derived from a chondritic mantle: The ~3.72 Ga Aktash gneisses, Tarim Craton (NW China). Earth Planet. Sci. Lett. 538, 116225 (2020).

    CAS 

    Google Scholar 

  • 24.

    Wang, Y.-F., Li, X.-H., Jin, W., Zeng, L. & Zhang, J.-H. Generation and maturation of Mesoarchean continental crust in the Anshan Complex, North China Craton. Precambr. Res. 341, 105651 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 25.

    Zeh, A., Stern, R. A. & Gerdes, A. The oldest zircons of Africa—their U–Pb–Hf–O isotope and trace element systematics, and implications for Hadean to Archean crust–mantle evolution. Precambr. Res. 241, 203–230 (2014).

    ADS 
    CAS 

    Google Scholar 

  • 26.

    Condie, K. C. How to make a continent: thirty-five years of TTG research. In Evolution of Archean Crust and Early Life (eds Dilek, Y. & Furnes, H.) 179–193 (Springer, 2014).

  • 27.

    Vezinet, A. et al. Hydrothermally-altered mafic crust as source for early Earth TTG: Pb/Hf/O isotope and trace element evidence in zircon from TTG of the Eoarchean Saglek Block, N. Labrador. Earth Planet. Sci. Lett. 503, 95–107 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 28.

    de Wit, M. J. & Furnes, H. 3.5-Ga hydrothermal fields and diamictites in the Barberton Greenstone Belt—Paleoarchean crust in cold environments. Sci. Adv. 2, e1500368 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    André, L. et al. Early continental crust generated by reworking of basalts variably silicified by seawater. Nat. Geosci. 12, 769–773 (2019).

    ADS 

    Google Scholar 

  • 30.

    Sizova, E., Gerya, T., Stüwe, K. & Brown, M. Generation of felsic crust in the Archean: a geodynamic modelling perspective. Precambr. Res. 271, 198–224 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 31.

    Mole, D. R. et al. Time-space evolution of an Archean craton: a Hf-isotope window into continent formation. Earth Sci. Rev. 196, 102831 (2019).

    CAS 

    Google Scholar 

  • 32.

    Nutman, A. P., Bennett, V. C. & Friend, C. R. L. The emergence of the Eoarchaean proto-arc: evolution of a c. 3700 Ma convergent plate boundary at Isua, southern West Greenland. In Continent Formation Through Time Geological Society Special Publication No. 389 (eds Roberts, N. M. W. et al.) 113–133 (The Geological Society of London, 2015).

  • 33.

    Hastie, A. R. & Fitton, J. G. Eoarchaean tectonics: new constraints from high pressure-temperature experiments and mass balance modelling. Precambr. Res. 325, 20–38 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 34.

    Moyen, J.-F., Champion, D. C. & Smithies, R. H. The geochemistry of Archaean plagioclase-rich granites as a marker of source enrichment and depth of melting. Earth Environ. Sci. Trans. R. Soc. Edinb. 100, 35–50 (2009).

    CAS 

    Google Scholar 

  • 35.

    Champion, D. C. & Smithies, R. H. Geochemistry of Paleoarchean granites of the East Pilbara Terrane, Pilbara Craton, Western Australia: implications for early Archean crustal growth. In Earth’s Oldest Rocks (eds Van Kranendonk, M. J. et al.) 369–409 (Elsevier, 2007).

  • 36.

    Smithies, R. H. & Champion, D. C. The Archaean high-Mg diorite suite: links to tonalite–trondhjemite–granodiorite magmatism and implications for early Archaean crustal growth. J. Petrol. 41, 1653–1671 (2000).

    ADS 
    CAS 

    Google Scholar 

  • 37.

    Stern, R. A. & Hanson, G. N. Archaean high-Mg granodiorite: a derivative of light rare earth element-enriched monzodiorite of mantle origin. J. Petrol. 32, 201–238 (1991).

    ADS 
    CAS 

    Google Scholar 

  • 38.

    Bindeman, I. N. et al. Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth Planet. Sci. Lett. 235, 480–496 (2005).

    ADS 
    CAS 

    Google Scholar 

  • 39.

    Hallis, L. J. et al. Evidence for primordial water in Earth’s deep mantle. Science 350, 795–797 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Williams, C. D., Mukhopadhyay, S., Rudolph, M. L. & Romanowicz, B. Primitive helium is sourced from seismically slow regions in the lowermost mantle. Geochem. Geophys. Geosyst. 20, 4130–4145 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 41.

    Palme, H. & O’Neill, H. St. C. Cosmochemical estimates of mantle composition. In Treatise on Geochemistry 2nd edn, Vol. 3 (eds Holland, H. D. & Turekian, K. K.) 1–39 (Elsevier, 2014).

  • 42.

    Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5, Q05B07 (2004).

    Google Scholar 

  • 43.

    Gardiner, N. J. et al. Processes of crust formation in the early Earth imaged through Hf isotopes from the East Pilbara Terrane. Precambr. Res. 297, 56–76 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 44.

    Smithies, R. H. et al. No evidence for high-pressure melting of Earth’s crust in the Archean. Nat. Commun. 10, 5559 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Smithies, R. H. et al. Two distinct origins for Archean greenstone belts. Earth Planet. Sci. Lett. 487, 106–116 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 46.

    O’Neill, C., Turner, S. & Rushmer, T. The inception of plate tectonics: a record of failure. Phil. Trans. R. Soc. A 376, 20170414 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Sun, S.-s. & McDonough, W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins Geological Society Special Publication No. 42 (eds Saunders, A. D. & Norry, M. J.) 313–345 (The Geological Society of London, 1989).

  • 48.

    de Oliveira, M. A., Dall’Agnol, R. & Scaillet, B. Petrological constraints on crystallization conditions of Mesoarchean sanukitoid rocks, Southeastern Amazonian Craton, Brazil. J. Petrol. 51, 2121–2148 (2010).

    ADS 

    Google Scholar 

  • 49.

    Pidgeon, R. T., Nemchin, A. A. & Cliff, J. Interaction of weathering solutions with oxygen and U–Pb isotopic systems of radiation-damaged zircon from an Archean granite, Darling Range Batholith, Western Australia. Contrib. Mineral. Petrol. 166, 511–523 (2013).

    ADS 
    CAS 

    Google Scholar 

  • 50.

    Black, L. P. et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 205, 115–140 (2004).

    ADS 
    CAS 

    Google Scholar 

  • 51.

    Nasdala, L. et al. Zircon M257 – a homogeneous natural reference material for the ion microprobe U–Pb analysis of zircon. Geostand. Geoanal. Res. 32, 247–265 (2008).

    CAS 

    Google Scholar 

  • 52.

    Cavosie, A. J. et al. The origin of high δ18O zircons: marbles, megacrysts, and metamorphism. Contrib. Mineral. Petrol. 162, 961–974 (2011).

    ADS 
    CAS 

    Google Scholar 

  • 53.

    Van Kranendonk, M. J., Kirkland, C. L. & Cliff, J. Oxygen isotopes in Pilbara Craton zircons support a global increase in crustal recycling at 3.2 Ga. Lithos 228-229, 90–98 (2015).

    ADS 

    Google Scholar 

  • 54.

    Pidgeon, R. T., Nemchin, A. A. & Whitehouse, M. J. The effect of weathering on U–Th–Pb and oxygen isotope systems of ancient zircons from the Jack Hills, Western Australia. Geochim. Cosmochim. Acta 197, 142–166 (2017).

    ADS 
    CAS 

    Google Scholar 

  • 55.

    Watson, E. B. & Harrison, T. M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 64, 295–304 (1983).

    ADS 
    CAS 

    Google Scholar 

  • 56.

    Smithies, R. H., Van Kranendonk, M. J. & Champion, D. C. It started with a plume: early Archaean basaltic proto-continental crust. Earth Planet. Sci. Lett. 238, 284–297 (2005).

    ADS 
    CAS 

    Google Scholar 

  • 57.

    Geological Survey of Western Australia Compilation of Geochronology Information, 2020 https://dmpbookshop.eruditetechnologies.com.au/product/compilation-of-geochronology-information-2020.do (Geological Survey of Western Australia, 2020).

  • 58.

    Martin, D. M. B., Hocking, R. M., Riganti, A. & Tyler, I. M. Geological Map of Western Australia, 1:2 500 000 14th edn (Geological Survey of Western Australia, 2015).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *