Strange India All Strange Things About India and world


  • Tokita, Y., Shimura, J., Nakajima, H., Goto, Y. & Watanabe, Y. Mechanism of intramolecular electron transfer in the photoexcited Zn-substituted cytochrome c: theoretical and experimental perspective. J. Am. Chem. Soc. 130, 5302–5310 (2008).

    CAS 

    Google Scholar 

  • Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992).

    ADS 
    CAS 

    Google Scholar 

  • Murphy, C. J. et al. Long-range photoinduced electron transfer through a DNA helix. Science 262, 1025–1029 (1993).

    ADS 
    CAS 

    Google Scholar 

  • Lindstrom, C. D. & Zhu, X.-Y. Photoinduced electron transfer at molecule–metal interfaces. Chem. Rev. 106, 4281–4300 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Ma, W., Ma, H., Peng, Y. Y., Tian, H. & Long, Y. T. An ultrasensitive photoelectrochemical platform for quantifying photoinduced electron-transfer properties of a single entity. Nat. Protoc. 14, 2672–2690 (2019).

    CAS 

    Google Scholar 

  • Jones, A. L., Jiang, J. & Schanze, K. S. Excitation-wavelength-dependent photoinduced electron transfer in a π-conjugated diblock oligomer. J. Am. Chem. Soc. 142, 12658–12668 (2020).

    CAS 

    Google Scholar 

  • O’Dea, J. R., Brown, L. M., Hoepker, N., Marohn, J. A. & Sadewasser, S. Scanning probe microscopy of solar cells: from inorganic thin films to organic photovoltaics. MRS Bull. 37, 642–650 (2012).

    Google Scholar 

  • Giridharagopal, R., Cox, P. A. & Ginger, D. S. Functional scanning probe imaging of nanostructured solar energy materials. Acc. Chem. Res. 49, 1769–1776 (2016).

    CAS 

    Google Scholar 

  • Gerster, D. et al. Photocurrent of a single photosynthetic protein. Nat. Nanotechnol. 7, 673–676 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Takeuchi, O. et al. Microscopic description of the current–voltage characteristics of a bulk-heterojunction organic solar cell under illumination. Appl. Phys. Express 7, 021602 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Coffey, D. C., Reid, O. G., Rodovsky, D. B., Bartholomew, G. P. & Ginger, D. S. Mapping local photocurrents in polymer/fullerene solar cells with photoconductive atomic force microscopy. Nano Lett. 7, 738–744 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Imada, H. et al. Single-molecule laser nanospectroscopy with micro-electron volt energy resolution. Science 373, 95–98 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Jaculbia, R. B. et al. Single-molecule resonance Raman effect in a plasmonic nanocavity. Nat. Nanotechnol. 15, 105–110 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Wu, S. W., Ogawa, N. & Ho, W. Atomic-scale coupling of photons to single-molecule junctions. Science 312, 1362–1365 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Zhu, S.-E. et al. Self-decoupled porphyrin with a tripodal anchor for molecular-scale electroluminescence. J. Am. Chem. Soc. 135, 15794–15800 (2013).

    CAS 

    Google Scholar 

  • Cocker, T. L., Peller, D., Yu, P., Repp, J. & Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 539, 263–267 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoshioka, K. et al. Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields. Nat. Photonics 10, 762–765 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Garg, M. & Kern, K. Attosecond coherent manipulation of electrons in tunneling microscopy. Science 367, 411–415 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature 531, 623–627 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Imada, H. et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 538, 364–367 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doppagne, B. et al. Vibronic spectroscopy with submolecular resolution from STM-induced electroluminescence. Phys. Rev. Lett. 118, 127401 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kimura, K. et al. Selective triplet exciton formation in a single molecule. Nature 570, 210–213 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Imada, H. et al. Single-molecule investigation of energy dynamics in a coupled plasmon–exciton system. Phys. Rev. Lett. 119, 013901 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murray, C. et al. Infrared and Raman spectroscopy of free-base and zinc phthalocyanines isolated in matrices. Phys. Chem. Chem. Phys. 12, 10406–10422 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murray, C. et al. Visible luminescence spectroscopy of free-base and zinc phthalocyanines isolated in cryogenic matrices. Phys. Chem. Chem. Phys. 13, 17543–17554 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Imai-Imada, M. et al. Energy-level alignment of a single molecule on ultrathin insulating film. Phys. Rev. B 98, 201403 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Doppagne, B. et al. Electrofluorochromism at the single-molecule level. Science 361, 251–255 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Repp, J., Meyer, G., Stojković, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ikeda, T., Iino, R. & Noji, H. Real-time fluorescence visualization of slow tautomerization of single free-base phthalocyanines under ambient conditions. Chem. Commun. 50, 9443–9446 (2014).

    CAS 

    Google Scholar 

  • Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Doppagne, B. et al. Single-molecule tautomerization tracking through space- and time-resolved fluorescence spectroscopy. Nat. Nanotechnol. 15, 207–211 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Böckmann, H. et al. Direct observation of photoinduced tautomerization in single molecules at a metal surface. Nano Lett. 16, 1034–1041 (2016).

    ADS 

    Google Scholar 

  • Miwa, K., Najarian, A. M., Mccreery, R. L. & Galperin, M. Hubbard nonequilibrium Green’s function analysis of photocurrent in nitroazobenzene molecular junction. J. Phys. Chem. Lett. 10, 1550–1557 (2019).

    CAS 

    Google Scholar 

  • Miwa, K. et al. Many-body state description of single-molecule electroluminescence driven by a scanning tunneling microscope. Nano Lett. 19, 2803–2811 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Yang, B. et al. Sub-nanometre resolution in single-molecule photoluminescence imaging. Nat. Photonics 14, 693–699 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).

    ADS 
    CAS 

    Google Scholar 

  • Kuhnke, K., Große, C., Merino, P. & Kern, K. Atomic-scale imaging and spectroscopy of electroluminescence at molecular interfaces. Chem. Rev. 117, 5174–5222 (2017).

    CAS 

    Google Scholar 

  • Yang, B., Kazuma, E., Yokota, Y. & Kim, Y. Fabrication of sharp gold tips by three-electrode electrochemical etching with high controllability and reproducibility. J. Phys. Chem. C 122, 16950–16955 (2018).

    CAS 

    Google Scholar 

  • Miwa, K., Imada, H., Kawahara, S. & Kim, Y. Effects of molecule–insulator interaction on geometric property of a single phthalocyanine molecule adsorbed on an ultrathin NaCl film. Phys. Rev. B 93, 165419 (2016).

    ADS 

    Google Scholar 

  • Neuman, T., Esteban, R., Casanova, D., García-Vidal, F. J. & Aizpurua, J. Coupling of molecular emitters and plasmonic cavities beyond the point-dipole approximation. Nano Lett. 18, 2358–2364 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Frisch, M. J. et al. Gaussian 16, revision C.01 (Gaussian, Inc., 2016); https://gaussian.com.

  • Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).

    ADS 
    CAS 

    Google Scholar 

  • Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    ADS 
    CAS 

    Google Scholar 

  • Henderson, T. M., Izmaylov, A. F., Scalmani, G. & Scuseria, G. E. Can short-range hybrids describe long-range-dependent properties? J. Chem. Phys. 131, 044108 (2009).

    ADS 

    Google Scholar 

  • Baer, R., Livshits, E. & Salzner, U. Tuned range-separated hybrids in density functional theory. Annu. Rev. Phys. Chem. 61, 85–109 (2010).

    CAS 

    Google Scholar 

  • Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).

    ADS 
    CAS 

    Google Scholar 

  • Casida, M. E. Time-dependent density functional response theory for molecules. In Recent Advances in Density Functional Methods: Part I (ed. Chong, D. P.) 155–192 (World Scientific, 1995).

  • Hirata, S. & Head-Gordon, M. Time-dependent density functional theory within the Tamm–Dancoff approximation. Chem. Phys. Lett. 314, 291–299 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Santoro, F., Improta, R., Lami, A., Bloino, J. & Barone, V. Effective method to compute Franck–Condon integrals for optical spectra of large molecules in solution. J. Chem. Phys. 126, 084509 (2007).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santoro, F., Lami, A., Improta, R. & Barone, V. Effective method to compute vibrationally resolved optical spectra of large molecules at finite temperature in the gas phase and in solution. J. Chem. Phys. 126, 184102 (2007).

    ADS 

    Google Scholar 

  • Santoro, F., Lami, A., Improta, R., Bloino, J. & Barone, V. Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg–Teller effect: the Qx band of porphyrin as a case study. J. Chem. Phys. 128, 224311 (2008).

    ADS 

    Google Scholar 

  • Barone, V., Bloino, J., Biczysko, M. & Santoro, F. Fully integrated approach to compute vibrationally resolved optical spectra: from small molecules to macrosystems. J. Chem. Theory Comput. 5, 540–554 (2009).

    CAS 

    Google Scholar 

  • Scivetti, I. & Persson, M. Frontier molecular orbitals of a single molecule adsorbed on thin insulating films supported by a metal substrate: electron and hole attachment energies. J. Phys. Condens. Matter 29, 355002 (2017).

    Google Scholar 

  • Galperin, M. Photonics and spectroscopy in nanojunctions: a theoretical insight. Chem. Soc. Rev. 46, 4000–4019 (2017).

    CAS 

    Google Scholar 

  • Miwa, K., Chen, F. & Galperin, M. Towards noise simulation in interacting nonequilibrium systems strongly coupled to baths. Sci. Rep. 7, 9735 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, F., Ochoa, M. A. & Galperin, M. Nonequilibrium diagrammatic technique for Hubbard Green functions. J. Chem. Phys. 146, 92301 (2017).

    Google Scholar 

  • Cohen, G. & Galperin, M. Green’s function methods for single molecule junctions. J. Chem. Phys. 152, 090901 (2020).

    ADS 
    CAS 

    Google Scholar 

  • White, A. J., Ochoa, M. A. & Galperin, M. Nonequilibrium atomic limit for transport and optical response of molecular junctions. J. Phys. Chem. C 118, 11159–11173 (2014).

    CAS 

    Google Scholar 

  • Schulz, F. et al. Many-body transitions in a single molecule visualized by scanning tunnelling microscopy. Nat. Phys. 11, 229–234 (2015).

    CAS 

    Google Scholar 

  • Ervasti, M. M., Schulz, F., Liljeroth, P. & Harju, A. Single- and many-particle description of scanning tunneling spectroscopy. J. Electron Spectros. Relat. Phenom. 219, 63–71 (2017).

    CAS 

    Google Scholar 

  • Seldenthuis, J. S., van der Zant, H. S. J., Ratner, M. A. & Thijssen, J. M. Electroluminescence spectra in weakly coupled single-molecule junctions. Phys. Rev. B 81, 205430 (2010).

    ADS 

    Google Scholar 

  • Fatayer, S. et al. Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy. Nat. Nanotechnol. 13, 376–380 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, P., Kocić, N., Repp, J., Siegert, B. & Donarini, A. Apparent reversal of molecular orbitals reveals entanglement. Phys. Rev. Lett. 119, 56801 (2017).

    ADS 

    Google Scholar 

  • Wu, S. W., Nazin, G. V., Chen, X., Qiu, X. H. & Ho, W. Control of relative tunneling rates in single molecule bipolar electron transport. Phys. Rev. Lett. 93, 236802 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Novotny, L. A. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2012).



  • Source link

    Leave a Reply

    Your email address will not be published.