Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Google Scholar
Iijima, S. & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993).
Google Scholar
Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. Nature 318, 162–163 (1985).
Google Scholar
Zhang, R.-S. & Jiang, J.-W. The art of designing carbon allotropes. Front. Phys. 14, 13401 (2019).
Google Scholar
Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).
Google Scholar
Clair, S. & de Oteyza, D. G. Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis. Chem. Rev. 119, 4717–4776 (2019).
Google Scholar
Hu, Y. et al. Synthesis of γ-graphyne using dynamic covalent chemistry. Nat. Synth. 1, 449–454 (2022).
Google Scholar
Meirzadeh, E. et al. A few-layer covalent network of fullerenes. Nature 613, 71–76 (2023).
Google Scholar
Fan, Q. et al. Biphenylene network: a nonbenzenoid carbon allotrope. Science 372, 852–856 (2021).
Google Scholar
Kaiser, K. et al. An sp-hybridized molecular carbon allotrope, cyclo[18] carbon. Science 365, 1299–1301 (2019).
Google Scholar
Sun, L. et al. Aromatic annular carbon allotropes: cumulenic cyclo[10]carbon and Peierls-transition-intermediate cyclo[14]carbon. Preprint at https://www.researchsquare.com/article/rs-2616838/v2 (2023).
Tobe, Y. & Wakabayashi, T. in Polyynes: Synthesis, Properties, and Applications (ed. Cataldo, F.) Ch. 6 (CRC/Taylor & Francis, 2006).
Anderson, H. L., Patrick, C. W., Scriven, L. M. & Woltering, S. L. A short history of cyclocarbons. Bull. Chem. Soc. Jpn 94, 798–811 (2021).
Google Scholar
Repp, J., Meyer, G., Stojkovic, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 26803 (2005).
Google Scholar
Diederich, F. Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds. Nature 369, 199–207 (1994).
Google Scholar
Marlton, S. J. P. et al. Probing colossal carbon rings. J. Phys. Chem. A 127, 1168–1178 (2023).
Google Scholar
Wang, S. L., Rittby, C. M. L. & Graham, W. R. M. Detection of cyclic carbon clusters. I. Isotopic study of the ν4(e’) mode of cyclic C6 in solid Ar. J. Chem. Phys. 107, 6032–6037 (1997).
Google Scholar
Wang, S. L., Rittby, C. M. L. & Graham, W. R. M. Detection of cyclic carbon clusters. II. Isotopic study of the ν12(eu) mode of cyclic C8 in solid Ar. J. Chem. Phys. 107, 7025–7033 (1997).
Google Scholar
Scriven, L. M. et al. Synthesis of cyclo[18] carbon via debromination of C18Br6. J. Am. Chem. Soc. 142, 12921–12924 (2020).
Google Scholar
Diederich, F. et al. All-carbon molecules: evidence for generation of cyclo[18] carbon from a stable organic precursor. Science 245, 1088–1090 (1989).
Google Scholar
Schleyer, P. V. R., Jiao, H., Glukhovtsev, M. N., Chandrasekhar, J. & Kraka, E. Double aromaticity in the 3,5-dehydrophenyl cation and in cyclo[6]carbon. J. Am. Chem. Soc. 116, 10129–10134 (1994).
Google Scholar
Fowler, P. W., Mizoguchi, N., Bean, D. E. & Havenith, R. W. A. Double aromaticity and ring currents in all-carbon rings. Chem. Eur. J. 15, 6964–6972 (2009).
Google Scholar
Charistos, N. D. & Muñoz-Castro, A. Induced magnetic field in sp-hybridized carbon rings: analysis of double aromaticity and antiaromaticity in cyclo[2N]carbon allotropes. Phys. Chem. Chem. Phys. 22, 9240–9249 (2020).
Google Scholar
Baryshnikov, G. V. et al. Aromaticity of even-number cyclo[n]carbons. J. Phys. Chem. A 124, 10849–10855 (2020).
Google Scholar
Hutter, J., Lüthi, H. P. & Diederich, F. Structures and vibrational frequencies of the carbon molecules C2-C18 calculated by density functional theory. J. Am. Chem. Soc. 116, 750–756 (1994).
Google Scholar
Ohno, K. Quantum chemical exploration of conversion pathways and isomeric structures of C16 molecules. Chem. Phys. Lett. 711, 60–65 (2018).
Google Scholar
Wenthold, P. G., Hrovat, D. A., Borden, W. T. & Lineberger, W. C. Transition-state spectroscopy of cyclooctatetraene. Science 272, 1456–1459 (1996).
Google Scholar
Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).
Google Scholar
Barkoutsos, P. K. et al. Quantum algorithms for electronic structure calculations: particle-hole Hamiltonian and optimized wave-function expansions. Phys. Rev. A 98, 022322 (2018).
Google Scholar
Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).
Google Scholar
Pavliček, N. et al. Polyyne formation via skeletal rearrangement induced by atomic manipulation. Nat. Chem. 10, 853–858 (2018).
Google Scholar
Gross, L. et al. Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012).
Google Scholar
Tobe, Y., Matsumoto, H., Naemura, K., Achiba, Y. & Wakabayashi, T. Generation of cyclocarbons with 4n carbon atoms (C12, C16, and C20) by [2 + 2] cycloreversion of propellane-annelated dehydroannulenes. Angew. Chem. Int. Edn 35, 1800–1802 (1996).
Google Scholar
Wakabayashi, T. et al. Photoelectron spectroscopy of Cn− produced from laser ablated dehydroannulene derivatives having carbon ring size of n = 12, 16, 18, 20, and 24. J. Chem. Phys. 107, 4783–4787 (1997).
Google Scholar
Ohara, M., Kasuya, D., Shiromaru, H. & Achiba, Y. Resonance-enhanced multiphoton electron detachment (REMPED) study of carbon anions up to C21–. J. Phys. Chem. A 104, 8622–8626 (2000).
Google Scholar
von Helden, G., Hsu, M.-T., Kemper, P. R. & Bowers, M. T. Structures of carbon cluster ions from 3 to 60 atoms: linears to rings to fullerenes. J. Chem. Phys. 95, 3835–3837 (1991).
Google Scholar
Baryshnikov, G. V., Valiev, R. R., Kuklin, A. V., Sundholm, D. & Ågren, H. Cyclo[18]carbon: insight into electronic structure, aromaticity, and surface coupling. J. Phys. Chem. Lett. 10, 6701–6705 (2019).
Google Scholar
Repp, J., Meyer, G., Olsson, F. E. & Persson, M. Controlling the charge state of individual gold adatoms. Science 305, 493–495 (2004).
Google Scholar
Gershoni-Poranne, R. & Stanger, A. Magnetic criteria of aromaticity. Chem. Soc. Rev. 44, 6597–6615 (2015).
Google Scholar
Anis, M. S. et al. Qiskit: an open-source framework for quantum computing. Zenodo https://doi.org/10.5281/zenodo.2573505 (2021).