Strange IndiaStrange India


  • Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Iijima, S. & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. Nature 318, 162–163 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, R.-S. & Jiang, J.-W. The art of designing carbon allotropes. Front. Phys. 14, 13401 (2019).

    Article 
    ADS 

    Google Scholar 

  • Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Clair, S. & de Oteyza, D. G. Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis. Chem. Rev. 119, 4717–4776 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, Y. et al. Synthesis of γ-graphyne using dynamic covalent chemistry. Nat. Synth. 1, 449–454 (2022).

    Article 
    ADS 

    Google Scholar 

  • Meirzadeh, E. et al. A few-layer covalent network of fullerenes. Nature 613, 71–76 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fan, Q. et al. Biphenylene network: a nonbenzenoid carbon allotrope. Science 372, 852–856 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kaiser, K. et al. An sp-hybridized molecular carbon allotrope, cyclo[18] carbon. Science 365, 1299–1301 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, L. et al. Aromatic annular carbon allotropes: cumulenic cyclo[10]carbon and Peierls-transition-intermediate cyclo[14]carbon. Preprint at https://www.researchsquare.com/article/rs-2616838/v2 (2023).

  • Tobe, Y. & Wakabayashi, T. in Polyynes: Synthesis, Properties, and Applications (ed. Cataldo, F.) Ch. 6 (CRC/Taylor & Francis, 2006).

  • Anderson, H. L., Patrick, C. W., Scriven, L. M. & Woltering, S. L. A short history of cyclocarbons. Bull. Chem. Soc. Jpn 94, 798–811 (2021).

    Article 
    CAS 

    Google Scholar 

  • Repp, J., Meyer, G., Stojkovic, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 26803 (2005).

    Article 
    ADS 

    Google Scholar 

  • Diederich, F. Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds. Nature 369, 199–207 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Marlton, S. J. P. et al. Probing colossal carbon rings. J. Phys. Chem. A 127, 1168–1178 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, S. L., Rittby, C. M. L. & Graham, W. R. M. Detection of cyclic carbon clusters. I. Isotopic study of the ν4(e’) mode of cyclic C6 in solid Ar. J. Chem. Phys. 107, 6032–6037 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, S. L., Rittby, C. M. L. & Graham, W. R. M. Detection of cyclic carbon clusters. II. Isotopic study of the ν12(eu) mode of cyclic C8 in solid Ar. J. Chem. Phys. 107, 7025–7033 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Scriven, L. M. et al. Synthesis of cyclo[18] carbon via debromination of C18Br6. J. Am. Chem. Soc. 142, 12921–12924 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diederich, F. et al. All-carbon molecules: evidence for generation of cyclo[18] carbon from a stable organic precursor. Science 245, 1088–1090 (1989).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schleyer, P. V. R., Jiao, H., Glukhovtsev, M. N., Chandrasekhar, J. & Kraka, E. Double aromaticity in the 3,5-dehydrophenyl cation and in cyclo[6]carbon. J. Am. Chem. Soc. 116, 10129–10134 (1994).

    Article 
    CAS 

    Google Scholar 

  • Fowler, P. W., Mizoguchi, N., Bean, D. E. & Havenith, R. W. A. Double aromaticity and ring currents in all-carbon rings. Chem. Eur. J. 15, 6964–6972 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Charistos, N. D. & Muñoz-Castro, A. Induced magnetic field in sp-hybridized carbon rings: analysis of double aromaticity and antiaromaticity in cyclo[2N]carbon allotropes. Phys. Chem. Chem. Phys. 22, 9240–9249 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baryshnikov, G. V. et al. Aromaticity of even-number cyclo[n]carbons. J. Phys. Chem. A 124, 10849–10855 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hutter, J., Lüthi, H. P. & Diederich, F. Structures and vibrational frequencies of the carbon molecules C2-C18 calculated by density functional theory. J. Am. Chem. Soc. 116, 750–756 (1994).

    Article 
    CAS 

    Google Scholar 

  • Ohno, K. Quantum chemical exploration of conversion pathways and isomeric structures of C16 molecules. Chem. Phys. Lett. 711, 60–65 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wenthold, P. G., Hrovat, D. A., Borden, W. T. & Lineberger, W. C. Transition-state spectroscopy of cyclooctatetraene. Science 272, 1456–1459 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Barkoutsos, P. K. et al. Quantum algorithms for electronic structure calculations: particle-hole Hamiltonian and optimized wave-function expansions. Phys. Rev. A 98, 022322 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pavliček, N. et al. Polyyne formation via skeletal rearrangement induced by atomic manipulation. Nat. Chem. 10, 853–858 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gross, L. et al. Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tobe, Y., Matsumoto, H., Naemura, K., Achiba, Y. & Wakabayashi, T. Generation of cyclocarbons with 4n carbon atoms (C12, C16, and C20) by [2 + 2] cycloreversion of propellane-annelated dehydroannulenes. Angew. Chem. Int. Edn 35, 1800–1802 (1996).

    Article 
    CAS 

    Google Scholar 

  • Wakabayashi, T. et al. Photoelectron spectroscopy of Cn produced from laser ablated dehydroannulene derivatives having carbon ring size of n = 12, 16, 18, 20, and 24. J. Chem. Phys. 107, 4783–4787 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ohara, M., Kasuya, D., Shiromaru, H. & Achiba, Y. Resonance-enhanced multiphoton electron detachment (REMPED) study of carbon anions up to C21. J. Phys. Chem. A 104, 8622–8626 (2000).

    Article 
    CAS 

    Google Scholar 

  • von Helden, G., Hsu, M.-T., Kemper, P. R. & Bowers, M. T. Structures of carbon cluster ions from 3 to 60 atoms: linears to rings to fullerenes. J. Chem. Phys. 95, 3835–3837 (1991).

    Article 
    ADS 

    Google Scholar 

  • Baryshnikov, G. V., Valiev, R. R., Kuklin, A. V., Sundholm, D. & Ågren, H. Cyclo[18]carbon: insight into electronic structure, aromaticity, and surface coupling. J. Phys. Chem. Lett. 10, 6701–6705 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Repp, J., Meyer, G., Olsson, F. E. & Persson, M. Controlling the charge state of individual gold adatoms. Science 305, 493–495 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gershoni-Poranne, R. & Stanger, A. Magnetic criteria of aromaticity. Chem. Soc. Rev. 44, 6597–6615 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anis, M. S. et al. Qiskit: an open-source framework for quantum computing. Zenodo https://doi.org/10.5281/zenodo.2573505 (2021).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *