Strange India All Strange Things About India and world


  • 1.

    Kapitza, P. Viscosity of liquid helium below the λ-point. Nature 141, 74 (1938).

    ADS 
    CAS 

    Google Scholar 

  • 2.

    Allen, J. F. & Misener, A. D. Flow of liquid helium II. Nature 141, 75 (1938).

    ADS 
    CAS 

    Google Scholar 

  • 3.

    Tisza, L. Transport phenomena in helium II. Nature 141, 913 (1938).

    ADS 
    CAS 

    Google Scholar 

  • 4.

    Landau, L. Theory of the superfluidity of helium II. Phys. Rev. 60, 356–358 (1941).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • 5.

    Peshkov, V. Second sound in helium II. Sov. Phys. JETP 11, 580–584 (1960).

    Google Scholar 

  • 6.

    Stamper-Kurn, D. M., Miesner, H.-J., Inouye, S. & Andrews, M. R. & Ketterle, W. Collisionless and hydrodynamic excitations of a Bose–Einstein condensate. Phys. Rev. Lett. 81, 500–503 (1998).

    ADS 
    CAS 

    Google Scholar 

  • 7.

    Sidorenkov, L. A. et al. Second sound and the superfluid fraction in a Fermi gas with resonant interactions. Nature 498, 78–81 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Hohenberg, P. C. Existence of long-range order in one and two dimensions. Phys. Rev. 158, 383–386 (1967).

    ADS 
    CAS 

    Google Scholar 

  • 9.

    Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1307 (1966).

    ADS 

    Google Scholar 

  • 10.

    Berezinskii, V. L. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continous symmetry group. II. Quantum systems. Sov. Phys. JETP 34, 610 (1971).

    ADS 
    MathSciNet 

    Google Scholar 

  • 11.

    Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in twodimensional systems. J. Phys. C 6, 1181–1203 (1973).

    ADS 
    CAS 

    Google Scholar 

  • 12.

    Nelson, D. R. & Kosterlitz, J. M. Universal jump in the superfluid density of two-dimensional superfluids. Phys. Rev. Lett. 39, 1201–1205 (1977).

    ADS 
    CAS 

    Google Scholar 

  • 13.

    Prokof’ev, N., Ruebenacker, O. & Svistunov, B. Critical point of a weakly interacting two-dimensional Bose gas. Phys. Rev. Lett. 87, 270402 (2001).

    PubMed 

    Google Scholar 

  • 14.

    Prokof’ev, N. & Svistunov, B. Two-dimensional weakly interacting Bose gas in the fluctuation region. Phys. Rev. A 66, 043608 (2002).

    ADS 

    Google Scholar 

  • 15.

    Ozawa, T. & Stringari, S. Discontinuities in the first and second sound velocities at the Berezinskii–Kosterlitz–Thouless transition. Phys. Rev. Lett. 112, 025302 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • 16.

    Ota, M. & Stringari, S. Second sound in a two-dimensional Bose gas: from the weakly to the strongly interacting regime. Phys. Rev. A 97, 033604 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 17.

    Hu, H., Taylor, E., Liu, X.-J., Stringari, S. & Griffin, A. Second sound and the density response function in uniform superfluid atomic gases. New J. Phys. 12, 043040 (2010).

    ADS 

    Google Scholar 

  • 18.

    Bishop, D. J. & Reppy, J. D. Study of the superfluid transition in two-dimensional 4He films. Phys. Rev. Lett. 40, 1727–1730 (1978).

    ADS 
    CAS 

    Google Scholar 

  • 19.

    Hadzibabic, Z., Krüger, P., Cheneau, M., Battelier, B. & Dalibard, J. Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas. Nature 441, 1118–1121 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Cladé, P., Ryu, C., Ramanathan, A., Helmerson, K. & Phillips, W. D. Observation of a 2D Bose gas: from thermal to quasicondensate to superfluid. Phys. Rev. Lett. 102, 170401 (2009).

    ADS 
    PubMed 

    Google Scholar 

  • 21.

    Tung, S., Lamporesi, G., Lobser, D., Xia, L. & Cornell, E. A. Observation of the presuperfluid regime in a two-dimensional Bose gas. Phys. Rev. Lett. 105, 230408 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Yefsah, T., Desbuquois, R., Chomaz, L., Günter, K. J. & Dalibard, J. Exploring the thermodynamics of a two-dimensional Bose gas. Phys. Rev. Lett. 107, 130401 (2011).

    ADS 
    PubMed 

    Google Scholar 

  • 23.

    Hung, C.-L., Zhang, X., Gemelke, N. & Chin, C. Observation of scale invariance and universality in two-dimensional Bose gases. Nature 470, 236–239 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Hadzibabic, Z. & Dalibard, J. Two-dimensional Bose fluids: an atomic physics perspective. Riv. Nuovo Cimento 34, 389–434 (2011).

    CAS 

    Google Scholar 

  • 25.

    Desbuquois, R. et al. Superfluid behaviour of a two-dimensional Bose gas. Nat. Phys. 8, 645–648 (2012).

    CAS 

    Google Scholar 

  • 26.

    Ha, L.-C. et al. Strongly interacting two-dimensional Bose gases. Phys. Rev. Lett. 110, 145302 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • 27.

    Choi, J. Y., Seo, S. W. & Shin, Y. I. Observation of thermally activated vortex pairs in a quasi-2D Bose gas. Phys. Rev. Lett. 110, 175302 (2013).

    ADS 
    PubMed 

    Google Scholar 

  • 28.

    Chomaz, L. et al. Emergence of coherence via transverse condensation in a uniform quasi-two-dimensional Bose gas. Nat. Commun. 6, 6162 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Fletcher, R. J. et al. Connecting Berezinskii–Kosterlitz–Thouless and BEC phase transitions by tuning interactions in a trapped gas. Phys. Rev. Lett. 114, 255302 (2015).

    ADS 
    MathSciNet 
    PubMed 

    Google Scholar 

  • 30.

    Murthy, P. A. et al. Observation of the Berezinskii–Kosterlitz–Thouless phase transition in an ultracold Fermi gas. Phys. Rev. Lett. 115, 010401 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Ville, J. L. et al. Sound propagation in a uniform superfluid two-dimensional Bose gas. Phys. Rev. Lett. 121, 145301 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Ota, M. et al. Collisionless sound in a uniform two-dimensional Bose gas. Phys. Rev. Lett. 121, 145302 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Cappellaro, A., Toigo, F. & Salasnich, L. Collisionless dynamics in two-dimensional bosonic gases. Phys. Rev. A 98, 043605 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 34.

    Wu, Z., Zhang, S. & Zhai, H. Dynamic Kosterlitz–Thouless theory for two-dimensional ultracold atomic gases. Phys. Rev. A 102, 043311 (2020).

    ADS 
    CAS 

    Google Scholar 

  • 35.

    Bohlen, M. et al. Sound propagation and quantum-limited damping in a two-dimensional Fermi gas. Phys. Rev. Lett. 124, 240403 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Petrov, D. S., Holzmann, M. & Shlyapnikov, G. V. Bose–Einstein condensation in quasi-2D trapped gases. Phys. Rev. Lett. 84, 2551–2555 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Fletcher, R. J. et al. Elliptic flow in a strongly interacting normal Bose gas. Phys. Rev. A 98, 011601 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 38.

    Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Emergence of a turbulent cascade in a quantum gas. Nature 539, 72–75 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Pitaevskii, L. & Stringari, S. Bose–Einstein Condensation and Superfluidity Ch. 7 (Oxford Univ. Press, 2016).

  • 40.

    Hohenberg, P. C. & Martin, P. C. Superfluid dynamics in the hydrodynamic (ωτ 1) and collisionless (ωτ 1) domains. Phys. Rev. Lett. 12, 69–71(1964).

    ADS 

    Google Scholar 

  • 41.

    Singh, V. P. & Mathey, L. Sound propagation in a two-dimensional Bose gas across the superfluid transition. Phys. Rev. Res. 2, 023336 (2020).

    CAS 

    Google Scholar 

  • 42.

    Patel, P. B. et al. Universal sound diffusion in a strongly interacting Fermi gas. Science 370, 1222–1226 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Pilati, S., Giorgini, S. & Prokof’ev, N. Critical temperature of interacting Bose gases in two and three dimensions. Phys. Rev. Lett. 100, 140405 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Foster, C. J., Blakie, P. B. & Davis, M. J. Vortex pairing in two-dimensional Bose gases. Phys. Rev. A 81, 023623 (2010).

    ADS 

    Google Scholar 

  • 45.

    Gawryluk, K. & Brewczyk, M. Signatures of a universal jump in the superfluid density of a two-dimensional Bose gas with a finite number of particles. Phys. Rev. A 99, 033615 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 46.

    Lee, T. D. & Yang, C. N. Low-temperature behavior of a dilute Bose system of hard spheres. II. Nonequilibrium properties. Phys. Rev. 113, 1406–1413 (1959).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • 47.

    Pitaevskii, L. & Stringari, S. In Universal Themes of Bose-Einstein Condensation (eds Proukakis, N. P. et al.) 322–347 (Cambridge Univ. Press, 2017).

  • 48.

    Eigen, C. et al. Observation of weak collapse in a Bose–Einstein condensate. Phys. Rev. X 6, 041058 (2016).

    Google Scholar 

  • 49.

    Campbell, R. L. D. et al. Efficient production of large 39K Bose–Einstein condensates. Phys. Rev. A 82, 063611 (2010).

    ADS 

    Google Scholar 

  • 50.

    Zaccanti, M. et al. Observation of an Efimov spectrum in an atomic system. Nat. Phys. 5, 586 (2009).

    CAS 

    Google Scholar 

  • 51.

    Hohenberg, P. C. & Martin, P. C. Microscopic theory of superfluid helium. Ann. Phys. 34, 291 (1965).

    ADS 
    CAS 

    Google Scholar 

  • 52.

    Hu, H., Zou, P. & Liu, X.-J. Low-momentum dynamic structure factor of a strongly interacting Fermi gas at finite temperature: a two-fluid hydrodynamic description. Phys. Rev. A 97, 023615 (2018).

    ADS 
    CAS 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *