Strange India All Strange Things About India and world


  • Landau, L. D. On the theory of phase transitions. Zh. Eksp. Teor. Fiz. 7, 19–32 (1937).

    CAS 

    Google Scholar 

  • Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, 1995).

  • Toner, J., Tu, Y. & Ramaswamy, S. Hydrodynamics and phases of flocks. Ann. Phys. 318, 170–244 (2005).

    Article 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • Cavagna, A. & Giardina, I. Bird flocks as condensed matter. Annu. Rev. Condens. Matter Phys. 5, 183–207 (2014).

    Article 
    CAS 

    Google Scholar 

  • Moessner, R. & Ramirez, A. P. Geometrical frustration. Phys. Today 59, 24–29 (2006).

    Article 
    CAS 

    Google Scholar 

  • Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nisoli, C., Moessner, R. & Schiffer, P. Colloquium: Artificial spin ice: designing and imaging magnetic frustration. Rev. Mod. Phys. 85, 1473–1490 (2013).

    Article 
    CAS 

    Google Scholar 

  • Ortiz-Ambriz, A., Nisoli, C., Reichhardt, C., Reichhardt, C. J. O. & Tierno, P. Colloquium: ice rule and emergent frustration in particle ice and beyond. Rev. Mod. Phys. 91, 041003 (2019).

    Article 
    CAS 

    Google Scholar 

  • Han, Y. et al. Geometric frustration in buckled colloidal monolayers. Nature 456, 898–903 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Witten, T. A. Stress focusing in elastic sheets. Rev. Mod. Phys. 79, 643–675 (2007).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Treml, B., Gillman, A., Buskohl, P. & Vaia, R. Origami mechanologic. Proc. Natl Acad. Sci. 115, 6916–6921 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keim, N. C., Paulsen, J. D., Zeravcic, Z., Sastry, S. & Nagel, S. R. Memory formation in matter. Rev. Mod. Phys. 91, 035002 (2019).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Faber, J. A., Udani, J. P., Riley, K. S., Studart, A. R. & Arrieta, A. F. Dome-patterned metamaterial sheets. Adv. Sci. 7, 2001955 (2020).

    Article 
    CAS 

    Google Scholar 

  • Chen, T., Pauly, M. & Reis, P. M. A reprogrammable mechanical metamaterial with stable memory. Nature 589, 386–390 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Merrigan, C., Nisoli, C. & Shokef, Y. Topologically protected steady cycles in an icelike mechanical metamaterial. Phys. Rev. Res. 3, 023174 (2021).

    Article 
    CAS 

    Google Scholar 

  • Jules, T., Reid, A., Daniels, K. E., Mungan, M. & Lechenault, F. Delicate memory structure of origami switches. Phys. Rev. Res. 4, 013128 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bense, H. & van Hecke, M. Complex pathways and memory in compressed corrugated sheets. Proc. Natl Acad. Sci. 118, e2111436118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yasuda, H. et al. Mechanical computing. Nature 598, 39–48 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Melancon, D., Forte, A. E., Kamp, L. M., Gorissen, B. & Bertoldi, K. Inflatable origami: multimodal deformation via multistability. Adv. Funct. Mater. 32, 2201891 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bauer, T. et al. Optics. Observation of optical polarization mobius strips. Science 347, 964–966 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mazurenko, A. et al. A cold-atom fermi-hubbard antiferromagnet. Nature 545, 462–466 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Toulouse, G. et al. in Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications Vol. 9, 99–103 (World Scientific, 1987).

  • Wioland, H., Woodhouse, F. G., Dunkel, J. & Goldstein, R. E. Ferromagnetic and antiferromagnetic order in bacterial vortex lattices. Nat. Phys. 12, 341–345 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, K.-T. et al. Transition from turbulent to coherent flows in confined three-dimensional active fluids. Science 355, eaal1979 (2017).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Forrow, A., Woodhouse, F. G. & Dunkel, J. Mode selection in compressible active flow networks. Phys. Rev. Lett. 119, 028102 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Ortiz-Ambriz, A., Nisoli, C., Reichhardt, C., Reichhardt, C. J. O. & Tierno, P. Colloquium: ice rule and emergent frustration in particle ice and beyond. Rev. of Mod. Phys. 91, 041003 (2019).

    Article 
    CAS 

    Google Scholar 

  • Molina, A., Kumar, S., Karpitschka, S. & Prakash, M. Droplet tilings for rapid exploration of spatially constrained many-body systems. Proc. Natl Acad. Sci. 118, e2020014118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bertoldi, K., Vitelli, V., Christensen, J. & Van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017).

    Article 
    CAS 

    Google Scholar 

  • Kang, S. H. et al. Complex ordered patterns in mechanical instability induced geometrically frustrated triangular cellular structures. Phys. Rev. Lett. 112, 098701 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Celli, P. et al. Shape-morphing architected sheets with non-periodic cut patterns. Soft Matter 14, 9744–9749 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meeussen, A. S., Oğuz, E. C., Shokef, Y. & van Hecke, M. Topological defects produce exotic mechanics in complex metamaterials. Nat. Phys. 16, 307–311 (2020).

    Article 
    CAS 

    Google Scholar 

  • Deng, B., Yu, S., Forte, A. E., Tournat, V. & Bertoldi, K. Characterization, stability, and application of domain walls in flexible mechanical metamaterials. Proc. Natl Acad. Sci. 117, 31002–31009 (2020).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coulais, C., Kettenis, C. & van Hecke, M. A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials. Nat. Phys. 14, 40–44 (2017).

    Article 

    Google Scholar 

  • Choi, G. P., Dudte, L. H. & Mahadevan, L. Programming shape using kirigami tessellations. Nat. Mater. 18, 999–1004 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y., Li, B., Zheng, Q., Genin, G. M. & Chen, C. Programmable and robust static topological solitons in mechanical metamaterials. Nat. Commun. 10, 5605 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hatcher, A. Vector Bundles and K-theory https://pi.math.cornell.edu/~hatcher/VBKT/VBpage.html (2017).

  • Bartolo, D. & Carpentier, D. Topological elasticity of nonorientable ribbons. Phys. Rev. X 9, 041058 (2019).

    CAS 

    Google Scholar 

  • Bazant, Z. P. & Cedolin, L. Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories (World Scientific, 2010).

  • Wen, X.-G. Colloquium: zoo of quantum-topological phases of matter. Rev. Mod. Phys. 89, 041004 (2017).

    Article 
    MathSciNet 

    Google Scholar 

  • Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

    Article 
    CAS 

    Google Scholar 

  • Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39–45 (2014).

    Article 
    CAS 

    Google Scholar 

  • Guzmán, M., Bartolo, D. & Carpentier, D. Geometry and topology tango in ordered and amorphous chiral matter. SciPost Phys. 12, 038 (2022).

    Article 
    MathSciNet 

    Google Scholar 

  • Boas, R. P. Jr Möbius shorts. Math. Mag. 68, 127 (1995).

    Article 

    Google Scholar 

  • Fruchart, M., Zhou, Y. & Vitelli, V. Dualities and non-abelian mechanics. Nature 577, 636–640 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Horowitz, P., Hill, W. & Robinson, I. The Art of Electronics Vol. 2 (Cambridge Univ. Press, 1989).

  • Zanardi, P. & Rasetti, M. Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999).

    Article 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • Alicea, J., Oreg, Y., Refael, G., Von Oppen, F. & Fisher, M. P. Non-abelian statistics and topological quantum information processing in 1d wire networks. Nat. Phys. 7, 412–417 (2011).

    Article 
    CAS 

    Google Scholar 

  • Baker, M. L. et al. A classification of spin frustration in molecular magnets from a physical study of large odd-numbered-metal, odd electron rings. Proc. Natl Acad. Sci. 109, 19113–19118 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chardac, A., Hoffmann, L. A., Poupart, Y., Giomi, L. & Bartolo, D. Topology-driven ordering of flocking matter. Phys. Rev. X 11, 031069 (2021).

    CAS 

    Google Scholar 

  • Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Hatcher, A. Algebraic Topology (Cambridge Univ. Press, 2002).

  • Gramain, A. Topologie des Surfaces (Presses Univ. de France, 1971).

  • Pesci, A. I., Goldstein, R. E., Alexander, G. P. & Moffatt, H. K. Instability of a möbius strip minimal surface and a link with systolic geometry. Phys. Rev. Lett. 114, 127801 (2015).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Audoly, B. & Pomeau, Y. Elasticity and Geometry: from Hair Curls to the Non-linear Response of Shells (Oxford Univ. Press, 2010).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *