Landau, L. D. On the theory of phase transitions. Zh. Eksp. Teor. Fiz. 7, 19–32 (1937).
Google Scholar
Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, 1995).
Toner, J., Tu, Y. & Ramaswamy, S. Hydrodynamics and phases of flocks. Ann. Phys. 318, 170–244 (2005).
Google Scholar
Cavagna, A. & Giardina, I. Bird flocks as condensed matter. Annu. Rev. Condens. Matter Phys. 5, 183–207 (2014).
Google Scholar
Moessner, R. & Ramirez, A. P. Geometrical frustration. Phys. Today 59, 24–29 (2006).
Google Scholar
Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).
Google Scholar
Nisoli, C., Moessner, R. & Schiffer, P. Colloquium: Artificial spin ice: designing and imaging magnetic frustration. Rev. Mod. Phys. 85, 1473–1490 (2013).
Google Scholar
Ortiz-Ambriz, A., Nisoli, C., Reichhardt, C., Reichhardt, C. J. O. & Tierno, P. Colloquium: ice rule and emergent frustration in particle ice and beyond. Rev. Mod. Phys. 91, 041003 (2019).
Google Scholar
Han, Y. et al. Geometric frustration in buckled colloidal monolayers. Nature 456, 898–903 (2008).
Google Scholar
Witten, T. A. Stress focusing in elastic sheets. Rev. Mod. Phys. 79, 643–675 (2007).
Google Scholar
Treml, B., Gillman, A., Buskohl, P. & Vaia, R. Origami mechanologic. Proc. Natl Acad. Sci. 115, 6916–6921 (2018).
Google Scholar
Keim, N. C., Paulsen, J. D., Zeravcic, Z., Sastry, S. & Nagel, S. R. Memory formation in matter. Rev. Mod. Phys. 91, 035002 (2019).
Google Scholar
Faber, J. A., Udani, J. P., Riley, K. S., Studart, A. R. & Arrieta, A. F. Dome-patterned metamaterial sheets. Adv. Sci. 7, 2001955 (2020).
Google Scholar
Chen, T., Pauly, M. & Reis, P. M. A reprogrammable mechanical metamaterial with stable memory. Nature 589, 386–390 (2021).
Google Scholar
Merrigan, C., Nisoli, C. & Shokef, Y. Topologically protected steady cycles in an icelike mechanical metamaterial. Phys. Rev. Res. 3, 023174 (2021).
Google Scholar
Jules, T., Reid, A., Daniels, K. E., Mungan, M. & Lechenault, F. Delicate memory structure of origami switches. Phys. Rev. Res. 4, 013128 (2022).
Google Scholar
Bense, H. & van Hecke, M. Complex pathways and memory in compressed corrugated sheets. Proc. Natl Acad. Sci. 118, e2111436118 (2021).
Google Scholar
Yasuda, H. et al. Mechanical computing. Nature 598, 39–48 (2021).
Google Scholar
Melancon, D., Forte, A. E., Kamp, L. M., Gorissen, B. & Bertoldi, K. Inflatable origami: multimodal deformation via multistability. Adv. Funct. Mater. 32, 2201891 (2022).
Google Scholar
Bauer, T. et al. Optics. Observation of optical polarization mobius strips. Science 347, 964–966 (2015).
Google Scholar
Mazurenko, A. et al. A cold-atom fermi-hubbard antiferromagnet. Nature 545, 462–466 (2017).
Google Scholar
Toulouse, G. et al. in Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications Vol. 9, 99–103 (World Scientific, 1987).
Wioland, H., Woodhouse, F. G., Dunkel, J. & Goldstein, R. E. Ferromagnetic and antiferromagnetic order in bacterial vortex lattices. Nat. Phys. 12, 341–345 (2016).
Google Scholar
Wu, K.-T. et al. Transition from turbulent to coherent flows in confined three-dimensional active fluids. Science 355, eaal1979 (2017).
Google Scholar
Forrow, A., Woodhouse, F. G. & Dunkel, J. Mode selection in compressible active flow networks. Phys. Rev. Lett. 119, 028102 (2017).
Google Scholar
Ortiz-Ambriz, A., Nisoli, C., Reichhardt, C., Reichhardt, C. J. O. & Tierno, P. Colloquium: ice rule and emergent frustration in particle ice and beyond. Rev. of Mod. Phys. 91, 041003 (2019).
Google Scholar
Molina, A., Kumar, S., Karpitschka, S. & Prakash, M. Droplet tilings for rapid exploration of spatially constrained many-body systems. Proc. Natl Acad. Sci. 118, e2020014118 (2021).
Google Scholar
Bertoldi, K., Vitelli, V., Christensen, J. & Van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017).
Google Scholar
Kang, S. H. et al. Complex ordered patterns in mechanical instability induced geometrically frustrated triangular cellular structures. Phys. Rev. Lett. 112, 098701 (2014).
Google Scholar
Celli, P. et al. Shape-morphing architected sheets with non-periodic cut patterns. Soft Matter 14, 9744–9749 (2018).
Google Scholar
Meeussen, A. S., Oğuz, E. C., Shokef, Y. & van Hecke, M. Topological defects produce exotic mechanics in complex metamaterials. Nat. Phys. 16, 307–311 (2020).
Google Scholar
Deng, B., Yu, S., Forte, A. E., Tournat, V. & Bertoldi, K. Characterization, stability, and application of domain walls in flexible mechanical metamaterials. Proc. Natl Acad. Sci. 117, 31002–31009 (2020).
Google Scholar
Coulais, C., Kettenis, C. & van Hecke, M. A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials. Nat. Phys. 14, 40–44 (2017).
Google Scholar
Choi, G. P., Dudte, L. H. & Mahadevan, L. Programming shape using kirigami tessellations. Nat. Mater. 18, 999–1004 (2019).
Google Scholar
Zhang, Y., Li, B., Zheng, Q., Genin, G. M. & Chen, C. Programmable and robust static topological solitons in mechanical metamaterials. Nat. Commun. 10, 5605 (2019).
Google Scholar
Hatcher, A. Vector Bundles and K-theory https://pi.math.cornell.edu/~hatcher/VBKT/VBpage.html (2017).
Bartolo, D. & Carpentier, D. Topological elasticity of nonorientable ribbons. Phys. Rev. X 9, 041058 (2019).
Google Scholar
Bazant, Z. P. & Cedolin, L. Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories (World Scientific, 2010).
Wen, X.-G. Colloquium: zoo of quantum-topological phases of matter. Rev. Mod. Phys. 89, 041004 (2017).
Google Scholar
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).
Google Scholar
Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39–45 (2014).
Google Scholar
Guzmán, M., Bartolo, D. & Carpentier, D. Geometry and topology tango in ordered and amorphous chiral matter. SciPost Phys. 12, 038 (2022).
Google Scholar
Boas, R. P. Jr Möbius shorts. Math. Mag. 68, 127 (1995).
Google Scholar
Fruchart, M., Zhou, Y. & Vitelli, V. Dualities and non-abelian mechanics. Nature 577, 636–640 (2020).
Google Scholar
Horowitz, P., Hill, W. & Robinson, I. The Art of Electronics Vol. 2 (Cambridge Univ. Press, 1989).
Zanardi, P. & Rasetti, M. Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999).
Google Scholar
Alicea, J., Oreg, Y., Refael, G., Von Oppen, F. & Fisher, M. P. Non-abelian statistics and topological quantum information processing in 1d wire networks. Nat. Phys. 7, 412–417 (2011).
Google Scholar
Baker, M. L. et al. A classification of spin frustration in molecular magnets from a physical study of large odd-numbered-metal, odd electron rings. Proc. Natl Acad. Sci. 109, 19113–19118 (2012).
Google Scholar
Chardac, A., Hoffmann, L. A., Poupart, Y., Giomi, L. & Bartolo, D. Topology-driven ordering of flocking matter. Phys. Rev. X 11, 031069 (2021).
Google Scholar
Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).
Google Scholar
Hatcher, A. Algebraic Topology (Cambridge Univ. Press, 2002).
Gramain, A. Topologie des Surfaces (Presses Univ. de France, 1971).
Pesci, A. I., Goldstein, R. E., Alexander, G. P. & Moffatt, H. K. Instability of a möbius strip minimal surface and a link with systolic geometry. Phys. Rev. Lett. 114, 127801 (2015).
Google Scholar
Audoly, B. & Pomeau, Y. Elasticity and Geometry: from Hair Curls to the Non-linear Response of Shells (Oxford Univ. Press, 2010).