Strange India All Strange Things About India and world


  • Foglia, M. J. & Poss, K. D. Building and re-building the heart by cardiomyocyte proliferation. Development 143, 729–740 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Homem, C. C. F., Repic, M. & Knoblich, J. A. Proliferation control in neural stem and progenitor cells. Nat. Rev. Neurosci. 16, 647–659 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shih, H. P., Wang, A. & Sander, M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu. Rev. Cell Dev. Biol. 29, 81–105 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Amini, R., Rocha-Martins, M. & Norden, C. Neuronal migration and lamination in the vertebrate retina. Front. Neurosci. 11, 742 (2018).

  • Ben-Itzhak, S. & Karniel, A. Minimum acceleration criterion with constraints implies bang–bang control as an underlying principle for optimal trajectories of arm reaching movements. Neural Comput. 20, 779–812 (2008).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • Li, Y., Ye, D. & Sun, Z. Time efficient sliding mode controller based on Bang–Bang logic for satellite attitude control. Aerosp. Sci. Technol. 75, 342–352 (2018).

    Article 

    Google Scholar 

  • Ratmarao, N. & Reitan, D. K. Improvement of power system transient stability using optimal control: bang–bang control of reactance. In IEEE Transactions on Power Apparatus and Systems Vol. PAS-89, 975–984 (IEEE, 1970).

  • Itzkovitz, S., Blat, I. C., Jacks, T., Clevers, H. & van Oudenaarden, A. Optimality in the development of intestinal crypts. Cell 148, 608–619 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoon, M., Okawa, H., Della Santina, L. & Wong, R. O. L. Functional architecture of the retina: development and disease. Prog. Retin. Eye Res. 42, 44–84 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matejčić, M., Salbreux, G. & Norden, C. A non-cell-autonomous actin redistribution enables isotropic retinal growth. PLoS Biol. 16, e2006018 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Icha, J., Kunath, C., Rocha-Martins, M. & Norden, C. Independent modes of ganglion cell translocation ensure correct lamination of the zebrafish retina. J. Cell Biol. 215, 259–275 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amini, R., Labudina, A. A. & Norden, C. Stochastic single cell migration leads to robust horizontal cell layer formation in the vertebrate retina. Development 146, dev173450 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chow, R. W., Almeida, A. D., Randlett, O., Norden, C. & Harris, W. A. Inhibitory neuron migration and IPL formation in the developing zebrafish retina. Development 142, 2665–2677 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weber, I. P. et al. Mitotic position and morphology of committed precursor cells in the zebrafish retina adapt to architectural changes upon tissue maturation. Cell Rep. 7, 386–397 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aparicio, G., Rodao, M., Badano, J. L. & Zolessi, F. R. Photoreceptor progenitor dynamics in the zebrafish embryo retina and its modulation by primary cilia and N-cadherin. Int. J. Dev. Biol. 65, 439–455 (2020).

  • Kaewkhaw, R. et al. Transcriptome dynamics of developing photoreceptors in three-dimensional retina cultures recapitulates temporal sequence of human cone and rod differentiation revealing cell surface markers and gene networks. Stem Cells 33, 3504–3518 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nakano, T. et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10, 771–785 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Icha, J., Weber, M., Waters, J. C. & Norden, C. Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays 39, 1700003 (2017).

    Article 

    Google Scholar 

  • Almeida, A. D. et al. Spectrum of Fates: a new approach to the study of the developing zebrafish retina. Development 141, 2912–2912 (2014).

    Article 
    CAS 

    Google Scholar 

  • Zolessi, F. R., Poggi, L., Wilkinson, C. J., Chien, C.-B. & Harris, W. A. Polarization and orientation of retinal ganglion cells in vivo. Neural Develop. 1, 2 (2006).

    Article 
    PubMed Central 

    Google Scholar 

  • Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15, 1090–1097 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Poggi, L., Vitorino, M., Masai, I. & Harris, W. A. Influences on neural lineage and mode of division in the zebrafish retina in vivo. J. Cell Biol. 171, 991–999 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suzuki, S. C. et al. Cone photoreceptor types in zebrafish are generated by symmetric terminal divisions of dedicated precursors. Proc. Natl Acad. Sci. USA 110, 15109–15114 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yanakieva, I., Erzberger, A., Matejčić, M., Modes, C. D. & Norden, C. Cell and tissue morphology determine actin-dependent nuclear migration mechanisms in neuroepithelia. J. Cell Biol. 218, 3272–3289 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Norden, C., Young, S., Link, B. A. & Harris, W. A. Actomyosin Is the main driver of interkinetic nuclear migration in the retina. Cell 138, 1195–1208 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Furukawa, T., Morrow, E. M. & Cepko, C. L. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91, 531–541 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nishida, A. et al. Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat. Neurosci. 6, 1255–1263 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Capowski, E. E. et al. Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development 146, dev171686 (2019).

  • Zhong, X. et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun. 5, 4047 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pittman, A. J., Law, M.-Y. & Chien, C.-B. Pathfinding in a large vertebrate axon tract: isotypic interactions guide retinotectal axons at multiple choice points. Development 135, 2865–2871 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martini, F. J. & Valdeolmillos, M. Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons. J. Neurosci. 30, 8660–8670 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lamb, T. D. Evolution of phototransduction, vertebrate photoreceptors and retina. Prog. Retin. Eye Res. 36, 52–119 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Strzyz, P. J. et al. Interkinetic nuclear migration is centrosome independent and ensures apical cell division to maintain tissue integrity. Dev. Cell 32, 203–219 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schaar, B. T. & McConnell, S. K. Cytoskeletal coordination during neuronal migration. Proc. Natl Acad. Sci. USA 102, 13652–13657 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seetharaman, S. & Etienne-Manneville, S. Cytoskeletal crosstalk in cell migration. Trends Cell Biol. 30, 720–735 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eldred, K. C. et al. Thyroid hormone signaling specifies cone subtypes in human retinal organoids. Science 362, eaau6348 (2018).

  • Hyatt, G. A., Schmitt, E. A., Fadool, J. M. & Dowling, J. E. Retinoic acid alters photoreceptor development in vivo. Proc. Natl Acad. Sci. USA 93, 13298–13303 (1996).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchsbaum, I. Y. & Cappello, S. Neuronal migration in the CNS during development and disease: insights from in vivo and in vitro models. Development 146, dev163766 (2019).

  • Gleeson, J. G. & Walsh, C. A. Neuronal migration disorders: from genetic diseases to developmental mechanisms. Trends Neurosci. 23, 352–359 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nadarajah, B., Brunstrom, J. E., Grutzendler, J., Wong, R. O. L. & Pearlman, A. L. Two modes of radial migration in early development of the cerebral cortex. Nat. Neurosci. 4, 143–150 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marinari, E. et al. Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding. Nature 484, 542–545 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Okamoto, M. et al. TAG-1-assisted progenitor elongation streamlines nuclear migration to optimize subapical crowding. Nat. Neurosci. 16, 1556–1566 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kosodo, Y. et al. Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain: mechanisms of interkinetic nuclear migration. EMBO J. 30, 1690–1704 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leung, L., Klopper, A. V., Grill, S. W., Harris, W. A. & Norden, C. Apical migration of nuclei during G2 is a prerequisite for all nuclear motion in zebrafish neuroepithelia. Development 138, 5003–5013 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kuwahara, A. et al. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat. Commun. 6, 6286 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pisharath, H. & Parsons, M. J. in Zebrafish: Methods in Molecular Biology Vol. 546 (eds Lieschke, G. J., Oates, A. C. & Kawakami, K.) 133–143 (Humana Press, 2009).

  • Williams, P. R. et al. In vivo development of outer retinal synapses in the absence of glial contact. J. Neurosci. 30, 11951–11961 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taverna, E. et al. Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells. Sci. Rep. 6, 21206 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kwan, K. M. et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 236, 3088–3099 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Uchimura, T., Fumoto, K., Yamamoto, Y., Ueda, K. & Hosoya, H. Spatial localization of mono-and diphosphorylated myosin II regulatory light chain at the leading edge of motile HeLa Cells. Cell Struct. Funct. 27, 479–486 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Burkel, B. M., von Dassow, G. & Bement, W. M. Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin. Cell Motil. Cytoskel. 64, 822–832 (2007).

    Article 
    CAS 

    Google Scholar 

  • Villefranc, J. A., Amigo, J. & Lawson, N. D. Gateway compatible vectors for analysis of gene function in the zebrafish. Dev. Dyn. 236, 3077–3087 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Namba, T. et al. Pioneering axons regulate neuronal polarization in the developing cerebral cortex. Neuron 81, 814–829 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Donovan, S. L. & Dyer, M. A. Preparation and square wave electroporation of retinal explant cultures. Nat. Protoc. 1, 2710–2718 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Icha, J. et al. Using light sheet fluorescence microscopy to image zebrafish eye development. J. Vis. Exp. 110, e53966 (2016).

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Parslow, A., Cardona, A. & Bryson-Richardson, R. J. Sample drift correction following 4D confocal time-lapse imaging. J. Vis. Exp. 86, 51086 (2014).

  • Meijering, E., Dzyubachyk, O. & Smal, I. in Imaging and Spectroscopic Analysis of Living Cells: Methods in Enzymology Vol. 504 (ed. Conn, P. M.) 183–200 (Academic Press, 2012).

  • Gorelik, R. & Gautreau, A. Quantitative and unbiased analysis of directional persistence in cell migration. Nat. Protoc. 9, 1931–1943 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Royer, L. A. et al. ClearVolume: open-source live 3D visualization for light-sheet microscopy. Nat. Methods 12, 480–481 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nerli, E., Rocha-Martins, M. & Norden, C. Asymmetric neurogenic commitment of retinal progenitors involves Notch through the endocytic pathway. eLife 9, e60462 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *