Strange IndiaStrange India


  • Berner, R. A. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci. 282, 451–473 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49, 81–115 (1995).

    Article 
    CAS 

    Google Scholar 

  • Broecker, W. S. A new boundry condition on atmospheric oxygen. J. Geophys. Res. 75, 3553–3557 (1970).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Garrels, R. M. & Lerman, A. Coupling of the sedimentary sulfur and carbon cycles—an improved model. Am. J. Sci. 284, 989–1007 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Derry, L. A. & France-Lanord, C. Neogene growth of the sedimentary organic carbon reservoir. Paleoceanography 11, 267–276 (1996).

    Article 
    ADS 

    Google Scholar 

  • Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol. 161, 181–198 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mills, B. J. W. et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res. 67, 172–186 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Krause, A. J. et al. Stepwise oxygenation of the Paleozoic atmosphere. Nat. Commun. 9, 4081 (2018).

    Article 
    ADS 

    Google Scholar 

  • Li, G. & Elderfield, H. Evolution of carbon cycle over the past 100 million years. Geochim. Cosmochim. Acta 103, 11–25 (2013).

    Article 
    ADS 

    Google Scholar 

  • Flower, B. P. & Kennett, J. P. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycle. Palaeogeogr. Palaeoclimatol. Palaeoecol. 108, 537–555 (1994).

    Article 

    Google Scholar 

  • Vincent, E. & Berger, W. H. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archaen to Present Vol. 32 (eds Sundquist, E. T. & Broecker, W. S.) 455–468 (AGU, 1985).

  • Regaudie-de-Gioux, A. & Duarte, C. M. Temperature dependence of planktonic metabolism in the ocean. Global Biogeochem Cyc 26, GB1015 (2012).

    Article 
    ADS 

    Google Scholar 

  • Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Shields, G. A. & Mills, B. J. W. Tectonic controls on the long-term carbon isotope mass balance. Proc. Natl Acad. Sci. USA 114, 4318–4323 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bolton, E. W., Berner, R. A. & Petsch, S. T. The weathering of sedimentary organic matter as a control on atmospheric O2: II. theoretical modeling. Am. J. Sci. 306, 575–615 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Torres, M. A., West, A. J. & Li, G. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales. Nature 507, 346–349 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mason, E., Edmonds, M. & Turchyn, A. V. Remobilization of crustal carbon may dominate volcanic arc emissions. Science 357, 290–294 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bradbury, H. J. & Turchyn, A. V. Reevaluating the carbon sink due to sedimentary carbonate formation in modern marine sediments. Earth Planet. Sci. Lett. 519, 40–49 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schrag, D. P., Higgins, J. A., Macdonald, F. A. & Johnston, D. T. Authigenic carbonate and the history of the global carbon cycle. Science 339, 540–543 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G. The Geological Time Scale 2012 (Elsevier, 2012).

  • Sadler, P. M. Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol. 89, 569–584 (1981).

    Article 
    ADS 

    Google Scholar 

  • Berner, R. A. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc. Natl Acad. Sci. USA 99, 4172–4177 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pedersen, T. F. & Calvert, S. E. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks? AAPG Bull. 74, 454–466 (1990).

    CAS 

    Google Scholar 

  • Arthur, M. A. & Sageman, B. B. in The Deposition of Organic Carbon-Rich Sediments: Models, Mechanisms and Consequences (ed. Harris, N. B.) (Society for Sedimentary Geology, 2005).

  • Hartnett, H. E., Keil, R. G., Hedges, J. I. & Devol, A. H. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391, 572–574 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lalonde, K., Mucci, A., Ouellet, A. & Gelinas, Y. Preservation of organic matter in sediments promoted by iron. Nature 483, 198–200 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ingall, E. A., Van, & Cappellen, P. Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments. Geochim. Cosmochim. Acta 54, 373–386 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Boyle, R. A. et al. Stabilization of the coupled oxygen and phosphorus cycles by the evolution of bioturbation. Nature Geosci. 7, 671–676 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cartapanis, O., Bianchi, D., Jaccard, S. L. & Galbraith, E. D. Global pulses of organic carbon burial in dee-sea sediments during glacial maxima. Nat. Commun. 7, 10796 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Longhurst, A. R. Ecological Geography of the Sea (Elsevier, 2010).

  • Dunne, J. P., Hales, B. & Toggweiler, J. R. Global calcite cycling constrained by sediment preservation controls. Global Biogeochem. Cyc. 26, GB3023 (2012).

    Article 
    ADS 

    Google Scholar 

  • Kuehl, S. A., Hariu, T. M. & Moore, W. S. Shelf sedimentation off the Ganges-Brahmaputra river system: evidence for sediment bypassing to the Bengal fan. Geology 17, 1132–1135 (1989).

    2.3.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1130%2F0091-7613%281989%29017%3C1132%3ASSOTGB%3E2.3.CO%3B2″ aria-label=”Article reference 32″ data-doi=”10.1130/0091-7613(1989)017<1132:SSOTGB>2.3.CO;2″>Article 
    ADS 
    CAS 

    Google Scholar 

  • Wright, L. D. & Freiedrichs, C. T. Gravity-driven sediment transport on continental shelves: a status report. Cont. Shelf Res. 26, 2092–2107 (2006).

    Article 
    ADS 

    Google Scholar 

  • Middlelburg, J. J., Vlug, T., Jaco, F., Van, & der Nat, W. Organic matter reminderalization in marine systems. Global Planet. Change 8, 47–58 (1993).

    Article 
    ADS 

    Google Scholar 

  • Shackleton, N. J. in Marine Petroleum Source Rocks (eds Brooks, J. & Fleet, A. J.) Vol. 26, 423–434 (Geological Society Special Publication, 1987).

  • Compton, J. S., Snyder, S. W. & Hodell, D. A. Phosphogenesis and weathering of shelf sediments from the southeastern United States: implications for Miocene d13C excursions and global cooling. Geology 18, 1227–1230 (1990).

    2.3.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1130%2F0091-7613%281990%29018%3C1227%3APAWOSS%3E2.3.CO%3B2″ aria-label=”Article reference 36″ data-doi=”10.1130/0091-7613(1990)018<1227:PAWOSS>2.3.CO;2″>Article 
    ADS 
    CAS 

    Google Scholar 

  • John, C. M. et al. Carbonaceous and phosphate-rich sediments of the Miocene Monterey Formation at El Capitan State Beach, California, U.S.A. J. Sediment. Res. 72, 252–267 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Follmi, K. B. et al. Phosphogenesis and organic-carbon preservation in the Miocene Monterey Formation at Naples Beach, California: the Monterey hypothesis revisited. GSA Bull. 117, 589–619 (2005).

    Article 

    Google Scholar 

  • Thomas, E. & Vincent, E. Equatorial Pacific deep-sea benthic foraminifera: faunal changes before the middle Miocene polar cooling. Geology 15, 1035–1039 (1987).

    2.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1130%2F0091-7613%281987%2915%3C1035%3AEPDBFF%3E2.0.CO%3B2″ aria-label=”Article reference 39″ data-doi=”10.1130/0091-7613(1987)15<1035:EPDBFF>2.0.CO;2″>Article 
    ADS 

    Google Scholar 

  • Tipple, B. J., Meyers, S. R. & Pagani, M. Carbon isotope ratio of Cenozoic CO2: a comparative evaluation of available geochemical proxies. Paleoceanography 25, PA3202 (2010).

    Article 
    ADS 

    Google Scholar 

  • Hodell, D. A. & Woodruff, F. Variations in the strontium isotopic ratio of seawater during the Miocene: stratigraphic and geochemical implications. Paleoceanography 9, 405–426 (1994).

    Article 
    ADS 

    Google Scholar 

  • Kasbohm, J. & Schoene, B. Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum. Sci. Adv. 4, eaat8223 (2018).

    Article 
    ADS 

    Google Scholar 

  • Lange, R. A. Constraints on the preeruptive volatile concentrations in the Columbia River flood basalts. Geology 30, 179–182 (2002).

    2.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1130%2F0091-7613%282002%29030%3C0179%3ACOTPVC%3E2.0.CO%3B2″ aria-label=”Article reference 43″ data-doi=”10.1130/0091-7613(2002)030<0179:COTPVC>2.0.CO;2″>Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Sosdian, S., Babila, T., Greenop, R., Foster, G. & Lear, C. Ocean carbon storage across the middle Miocene: a new interpretation for the Monterey Event. Nat. Commun. 11, 134 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Longman, J., Mills, B. J. W., Donnadieu, Y. & Godderis, Y. Assessing volcanic controls on Miocene climate change. Geophys. Res. Lett. 49, e2021GL096519 (2022).

    Article 
    ADS 

    Google Scholar 

  • Boudreau, B. P. & Luo, Y. Retrodiction of secular variation in deep-sea CaCO3 burial during the Cenozoic. Earth Planet. Sci. Lett. 474, 1–12 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Falkowski, P. G. et al. The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309, 2202–2204 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Katz, M. E. et al. Biological overprint of the geological carbon cycle. Mar. Geol. 217, 323–338 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Olivarez Lyle, A. & Lyle, M. Missing organic carbon in Eocene marine sediments: is metabolism the biological feedback that maintains end-member climates? Paleoceanography https://doi.org/10.1029/2005PA001230 (2006).

  • Stanley, S. M. Relation of Phanerozoic stable isotope excursions to climate, bacterial metabolism, and major extinctions. Proc. Natl Acad. Sci. USA 107, 19185–19189 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • John, E. H., Wilson, J. D., Pearson, P. N. & Ridgwell, A. Temperature-dependent remineralization and carbon cycling in the warm Eocene oceans. Palaeogeogr. Palaeoclimatol. Palaeoecol. 413, 158–166 (2014).

    Article 

    Google Scholar 

  • Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rae, J. W. B. et al. Atmospheric CO2 over the past 66 million years from marine archives. Annu. Rev. Earth Planet Sci. 49, 609–641 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem. Cycles 21, GB4006 (2007).

    Article 
    ADS 

    Google Scholar 

  • Molnar, P. & England, P. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346, 29–34 (1990).

    Article 
    ADS 

    Google Scholar 

  • Lazarus, D. B. Neptune: a marine micropaleontology database. Math. Geol. 26, 817–832 (1994).

    Article 

    Google Scholar 

  • Spencer-Cervato, C. The Cenozoic deep sea microfossil record: explorations of the DSDP/ODP sample set using the Neptune database. Palaeontol. Electron. 2, 270 (1999).

    Google Scholar 

  • Meyers, P. A. & Silliman, J. E. Organic matter in Pleistocene to Quaternary turbidites from Sites 897, 898, 899 and 900, Iberia Abyssal Plain. In Proc. Ocean Drilling Program, Scientific Results Vol. 149 (eds Whitmarsch, R. B. et al.) 305–313 (Ocean Drilling Program, 1996).

  • Olivarez Lyle, A. & Lyle, M. Organic carbon and barium in Eocene sediments: possible controls on nutrient recycling in the Eocene equatorial Pacific Ocean. In Proc. Ocean Drilling Program, Scientific Results Vol. 199 (eds Wilson, P. A. et al.) 1–33 (Ocean Drilling Program, 2005).

  • Shipboard Scientific Party. 12. Site 1219. In Proc. Ocean Drilling Program, Initial Reports Vol. 199 (eds Lyle, M. et al.) (Ocean Drilling Program, 2002).

  • Expedition 306 Scientists. Site U1312-U1315 methods. In Proc. Integrated Ocean Drilling Program Vol. 303/306 (eds Channell, J. E. T. et al.) (IODP, 2006).

  • Expedition 317 Scientists. Methods. In Proc. Integrated Ocean Drilling Program Vol. 317 (eds Fulthorpe, C. S. et al.) (IODP, 2011).

  • Galy, V. et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450, 407–410 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • France-Lanord, C. & Derry, L. A. Organic carbon buria forcing of the carbon cycle from Himalayan erosion. Nature 390, 65–67 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sclater, J. G., Anderson, R. N. & Bell, M. L. Elevation of ridges and evolution of the central eastern Pacific. J. Geophys. Res. 76, 7888–7915 (1971).

    Article 
    ADS 

    Google Scholar 

  • Burdige, D. J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107, 467–485 (2007).

    Article 
    CAS 

    Google Scholar 

  • Hayes, C. T. et al. Global ocean sediment composition and burial flux in the deep sea. Global Biogeochem. Cyc. 35, e2020GB006769 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Muller, R. D. GPlates: building a virtual Earth though deep time. Geochem. Geophys. Geosyst. 19, 2243–2261 (2018).

    Article 
    ADS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *