Strange IndiaStrange India


  • Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20, 608–624 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Horn, D. Antigenic variation in African trypanosomes. Mol. Biochem. Parasitol. 195, 123–129 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, L. et al. Differential m6A methylomes between two major life stages allows potential regulations in Trypanosoma brucei. Biochem. Biophys. Res. Commun. 508, 1286–1290 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Franco, J. R., Simarro, P. P., Diarra, A., Ruiz-Postigo, J. A. & Jannin, J. G. The journey towards elimination of gambiense human African trypanosomiasis: not far, nor easy. Parasitology 141, 748–760 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Cross, G. A., Kim, H. S. & Wickstead, B. Capturing the variant surface glycoprotein repertoire (the VSGnome) of Trypanosoma brucei Lister 427. Mol. Biochem. Parasitol. 195, 59–73 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Cross, G. A. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71, 393–417 (1975).

    CAS 
    PubMed 

    Google Scholar 

  • Nilsson, D. et al. Spliced leader trapping reveals widespread alternative splicing patterns in the highly dynamic transcriptome of Trypanosoma brucei. PLoS Pathog. 6, e1001037 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kraus, A. J., Brink, B. G. & Siegel, T. N. Efficient and specific oligo-based depletion of rRNA. Sci Rep. 9, 12281 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gunzl, A. et al. RNA polymerase I transcribes procyclin genes and variant surface glycoprotein gene expression sites in Trypanosoma brucei. Eukaryot. Cell 2, 542–551 (2003).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fadda, A. et al. Transcriptome-wide analysis of trypanosome mRNA decay reveals complex degradation kinetics and suggests a role for co-transcriptional degradation in determining mRNA levels. Mol. Microbiol. 94, 307–326 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berberof, M. et al. The 3′-terminal region of the mRNAs for VSG and procyclin can confer stage specificity to gene expression in Trypanosoma brucei. EMBO J. 14, 2925–2934 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ridewood, S. et al. The role of genomic location and flanking 3′UTR in the generation of functional levels of variant surface glycoprotein in Trypanosoma brucei. Mol. Microbiol. 106, 614–634 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roditi, I. et al. Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei. J. Cell Biol. 108, 737–746 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • Ehlers, B., Czichos, J. & Overath, P. RNA turnover in Trypanosoma brucei. Mol. Cell. Biol. 7, 1242–1249 (1987).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matthews, K. R. The developmental cell biology of Trypanosoma brucei. J. Cell Sci. 118, 283–290 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Wei, C. M., Gershowitz, A. & Moss, B. Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell 4, 379–386 (1975).

    CAS 
    PubMed 

    Google Scholar 

  • Perry, R. P., Kelley, D. E., Friderici, K. & Rottman, F. The methylated constituents of L cell messenger RNA: evidence for an unusual cluster at the 5′ terminus. Cell 4, 387–394 (1975).

    CAS 
    PubMed 

    Google Scholar 

  • Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Freistadt, M. S., Cross, G. A. & Robertson, H. D. Discontinuously synthesized mRNA from Trypanosoma brucei contains the highly methylated 5′ cap structure, m7GpppA*A*C(2′-O)mU*A. J. Biol. Chem. 263, 15071–15075 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • Bangs, J. D., Crain, P. F., Hashizume, T., McCloskey, J. A. & Boothroyd, J. C. Mass spectrometry of mRNA cap 4 from trypanosomatids reveals two novel nucleosides. J. Biol. Chem. 267, 9805–9815 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • Perry, K. L., Watkins, K. P. & Agabian, N. Trypanosome mRNAs have unusual “cap 4” structures acquired by addition of a spliced leader. Proc. Natl Acad. Sci. USA 84, 8190–8194 (1987).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hauenschild, R. et al. The reverse transcription signature of N-1-methyladenosine in RNA-seq is sequence dependent. Nucleic Acids Res. 43, 9950–9964 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46, D303–D307 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Molinie, B. et al. m6A-LAIC-seq reveals the census and complexity of the m6A epitranscriptome. Nat. Methods 13, 692–698 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiang, J. F. et al. N6-methyladenosines modulate A-to-I RNA editing. Mol. Cell 69, 126–135.e6 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Clayton, C. E. Regulation of gene expression in trypanosomatids: living with polycistronic transcription. Open Biol. 9, 190072 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schibler, U., Kelley, D. E. & Perry, R. P. Comparison of methylated sequences in messenger RNA and heterogeneous nuclear RNA from mouse L cells. J. Mol. Biol. 115, 695–714 (1977).

    CAS 
    PubMed 

    Google Scholar 

  • Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoek, M., Zanders, T. & Cross, G. A. M. Trypanosoma brucei expression-site-associated-gene 8 protein interacts with a Pumilio family protein. Mol. Biochem. Parasitol. 120, 269–283 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Iyer, L. M., Zhang, D. & Aravind, L. Adenine methylation in eukaryotes: apprehending the complex evolutionary history and functional potential of an epigenetic modification. Bioessays 38, 27–40 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Domingo-Sananes, M. R., Szoor, B., Ferguson, M. A., Urbaniak, M. D. & Matthews, K. R. Molecular control of irreversible bistability during trypanosome developmental commitment. J. Cell Biol. 211, 455–468 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Melo do Nascimento, L. et al. Functional insights from a surface antigen mRNA-bound proteome. eLife 10, e68136 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fadda, A., Färber, V., Droll, D. & Clayton, C. The roles of 3′-exoribonucleases and the exosome in trypanosome mRNA degradation. RNA 19, 937–947 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwede, A. et al. A role for Caf1 in mRNA deadenylation and decay in trypanosomes and human cells. Nucleic Acids Res. 36, 3374–3388 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gallie, D. R. The role of the poly(A) binding protein in the assembly of the Cap-binding complex during translation initiation in plants. Translation (Austin) 2, e959378 (2014).

    Google Scholar 

  • Garneau, N. L., Wilusz, J. & Wilusz, C. J. The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol. 8, 113–126 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, C. Y. & Shyu, A. B. Mechanisms of deadenylation-dependent decay. Wiley Interdiscip. Rev. RNA 2, 167–183 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Decker, C. J. & Parker, R. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7, 1632–1643 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Tang, T. T. L., Stowell, J. A. W., Hill, C. H. & Passmore, L. A. The intrinsic structure of poly(A) RNA determines the specificity of Pan2 and Caf1 deadenylases. Nat. Struct. Mol. Biol. 26, 433–442 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *