Strange IndiaStrange India


  • Van Emden, H. F. & Harrington, R. Aphids as Crop Pests 2nd Edn (CABI, 2017).

  • Karban, R. Plant communication. Ann. Rev. Ecol. Evol. Syst. 52, 1–24 (2021).

    Article 

    Google Scholar 

  • Loreto, F. & D’Auria, S. How do plants sense volatiles sent by other plants? Trends Plant Sci. 27, 29–38 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shulaev, V., Silverman, P. & Raskin, I. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 386, 738–738 (1997).

    Article 
    CAS 

    Google Scholar 

  • Wenig, M. et al. Systemic acquired resistance networks amplify airborne defense cues. Nat. Commun. 10, 3813 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pickett, J. A. & Khan, Z. R. Plant volatile-mediated signalling and its application in agriculture: successes and challenges. N. Phytol. 212, 856–870 (2016).

    Article 
    CAS 

    Google Scholar 

  • Sugimoto, K. et al. Identification of a tomato UDP-arabinosyltransferase for airborne volatile reception. Nat. Commun. 14, 677 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bleecker, A. B. & Schaller, G. E. The mechanism of ethylene perception. Plant Physiol. 111, 653–660 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fereres, A. & Moreno, A. Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res. 141, 158–168 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Babikova, Z. et al. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol. Lett. 16, 835–843 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Moreira, X., Nell, C. S., Katsanis, A., Rasmann, S. & Mooney, K. A. Herbivore specificity and the chemical basis of plant-plant communication in Baccharis salicifolia (Asteraceae). N. Phytol. 220, 703–713 (2018).

    Article 
    CAS 

    Google Scholar 

  • Staudt, M. et al. Volatile organic compound emissions induced by the aphid Myzus persicae differ among resistant and susceptible peach cultivars and a wild relative. Tree Physiol. 30, 1320–1334 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saad, K. A., Mohamad Roff, M. N., Hallett, R. H. & Idris, A. B. Aphid-induced defences in chilli affect preferences of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Sci. Rep. 5, 13697 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, Y. J. & Hwang, S. Y. Cucumber Plants baited with methyl salicylate accelerates Scymnus (Pullus) sodalis (Coleoptera: Coccinellidae) visiting to reduce cotton aphid (Hemiptera: Aphididae) infestation. J. Econ. Entomol. 110, 2092–2099 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mallinger, R. E., Hogg, D. B. & Gratton, C. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. J. Econ. Entomol. 104, 115–124 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Ninkovic, V., Glinwood, R., Unlu, A. G., Ganji, S. & Unelius, C. R. Effects of methyl salicylate on host plant acceptance and feeding by the aphid Rhopalosiphum padi. Front. Plant Sci. 12, 710268 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, S. W. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 321, 342–342 (2008).

    CAS 

    Google Scholar 

  • Vlot, A. C., Dempsey, D. A. & Klessig, D. F. Salicylic acid, a multifaceted hormone to combat disease. Ann. Rev. Phytopathol. 47, 177–206 (2009).

    Article 
    CAS 

    Google Scholar 

  • Dudareva, N., Raguso, R. A., Wang, J. H., Ross, E. J. & Pichersky, E. Floral scent production in Clarkia breweri—III. Enzymatic synthesis and emission of benzenoid esters. Plant Physiol. 116, 599–604 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Forouhar, F. et al. Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc. Natl Acad. Sci. USA 102, 1773–1778 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. J. et al. A calmodulin-binding transcription factor links calcium signaling to antiviral RNAi defense in plants. Cell Host Microbe 29, 1393–1406 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Olsen, A. N., Ernst, H. A., Lo Leggio, L. & Skriver, K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10, 79–87 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • De Clercq, I. et al. The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell 25, 3472–3490 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, F. et al. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana. Mol. Plant Microbe Interact. 27, 567–577 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Naylor, M., Murphy, A. M., Berry, J. O. & Carr, J. P. Salicylic acid can induce resistance to plant virus movement. Mol. Plant Microbe Interact. 11, 860–868 (1998).

    Article 
    CAS 

    Google Scholar 

  • Guo, H. J. et al. Aphid-borne viral spread is enhanced by virus-induced accumulation of plant reactive oxygen species. Plant Physiol. 179, 143–155 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2021).

  • Arimura, G. et al. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406, 512–515 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Engelberth, J., Alborn, H. T., Schmelz, E. A. & Tumlinson, J. H. Airborne signals prime plants against insect herbivore attack. Proc. Natl Acad. Sci. USA 101, 1781–1785 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karban, R., Yang, L. H. & Edwards, K. F. Volatile communication between plants that affects herbivory: a meta-analysis. Ecol. Lett. 17, 44–52 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Donovan, M. P., Nabity, P. D. & DeLucia, E. H. Salicylic acid-mediated reductions in yield in Nicotiana attenuata challenged by aphid herbivory. Arthropod Plant Interact. 7, 45–52 (2013).

    Article 

    Google Scholar 

  • Cao, H. H., Liu, H. R., Zhang, Z. F. & Liu, T. X. The green peach aphid Myzus persicae perform better on pre-infested Chinese cabbage Brassica pekinensis by enhancing host plant nutritional quality. Sci. Rep. 6, 21954 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blande, J. D., Korjus, M. & Holopainen, J. K. Foliar methyl salicylate emissions indicate prolonged aphid infestation on silver birch and black alder. Tree Physiol. 30, 404–416 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van Poecke, R. M. P. & Dicke, M. Indirect defence of plants against herbivores: using Arabidopsis thaliana as a model plant. Plant Biol. 6, 387–401 (2004).

    Article 
    PubMed 

    Google Scholar 

  • James, D. G. Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis. J. Chem. Ecol. 29, 1601–1609 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Woods, J. L., James, D. G., Lee, J. C. & Gent, D. H. Evaluation of airborne methyl salicylate for improved conservation biological control of two-spotted spider mite and hop aphid in Oregon hop yards. Exp. Appl. Acarol. 55, 401–416 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rowen, E., Gutensohn, M., Dudareva, N. & Kaplan, I. Carnivore attractant or plant elicitor? Multifunctional roles of methyl salicylate lures in tomato defense. J. Chem. Ecol. 43, 573–585 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, J. et al. Herbivore-Induced rice volatiles attract and affect the predation ability of the wolf spiders, Pirata subpiraticus and Pardosa pseudoannulata. Insects 13, 90 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Attaran, E., Zeier, T. E., Griebel, T. & Zeier, J. Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell 21, 954–971 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kwon, S. et al. Biotic and abiotic stresses induce AbSAMT1, encoding S-adenosyl-l-methionine: salicylic acid carboxyl methyltransferase, in Atropa belladonna. Plant Biotechnol. 26, 207–215 (2009).

    Article 
    CAS 

    Google Scholar 

  • Xu, R., Song, F. & Zheng, Z. OsBISAMT1, a gene encoding S-adenosyl-l-methionine: salicylic acid carboxyl methyltransferase, is differentially expressed in rice defense responses. Mol. Biol. Rep. 33, 223–231 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hippauf, F. et al. Enzymatic, expression and structural divergences among carboxyl O-methyltransferases after gene duplication and speciation in Nicotiana. Plant Mol. Biol. 72, 311–330 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, R. et al. Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell 26, 4991–5008 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, P. Z. et al. Viruses mobilize plant immunity to deter nonvector insect herbivores. Sci. Adv. 5, eaav9801 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tungadi, T. et al. Cucumber mosaic virus and its 2b protein alter emission of host volatile organic compounds but not aphid vector settling in tobacco. Virol. J. 14, 91 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, D. W. et al. Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Res. 27, 402–415 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Westwood, J. H. et al. A trio of viral proteins tunes aphid-plant interactions in Arabidopsis thaliana. PLoS ONE 8, e83066 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rhee, S. J., Watt, L. G., Bravo, A. C., Murphy, A. M. & Carr, J. P. Effects of the cucumber mosaic virus 2a protein on aphid-plant interactions in Arabidopsis thaliana. Mol. Plant Pathol. 21, 1248–1254 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Casteel, C. L. et al. The NIa-Pro protein of turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). Plant J. 77, 653–663 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bak, A., Cheung, A. L., Yang, C. L., Whitham, S. A. & Casteel, C. L. A viral protease relocalizes in the presence of the vector to promote vector performance. Nat. Commun. 8, 14493 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ying, X. B. et al. RNA-dependent RNA polymerase 1 from Nicotiana tabacum suppresses RNA silencing and enhances viral infection in Nicotiana benthamiana. Plant Cell 22, 1358–1372 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, X. et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 8, 1274–1284 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kessler, A. & Baldwin, I. T. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291, 2141–2144 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kost, C. & Heil, M. Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J. Ecol. 94, 619–628 (2006).

    Article 
    CAS 

    Google Scholar 

  • Ozawa, R., Arimura, G., Takabayashi, J., Shimoda, T. & Nishioka, T. Involvement of jasmonate- and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol. 41, 391–398 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feng, H. et al. Acylsugars protect Nicotiana benthamiana against insect herbivory and desiccation. Plant Mol. Biol. 109, 505–522 (2021).

  • Fernandez-Calvino, L., Lopez-Abella, D., Lopez-Moya, J. J. & Fereres, A. Comparison of potato virus Y and plum pox virus transmission by two aphid species in relation to their probing behavior. Phytoparasitica 34, 315–324 (2006).

    Article 

    Google Scholar 

  • Verdier, M., Chesnais, Q., Pirolles, E., Blanc, S. & Drucker, M. The cauliflower mosaic virus transmission helper protein P2 modifies directly the probing behavior of the aphid vector Myzus persicae to facilitate transmission. PLoS Pathog. 19, e1011161 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, H. X. et al. A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proc. Natl Acad. Sci. USA 116, 490–495 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. Geminiviral V2 protein suppresses transcriptional gene silencing through interaction with AGO4. J. Virol. 93, e01675-18 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the \({2}^{-\Delta \Delta {C}_{{\rm{T}}}}\) method. Methods 25, 402–408 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. B. et al. The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. Plant Cell 23, 1625–1638 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geng, C. et al. Tobacco vein banding mosaic virus 6K2 protein hijacks NbPsbO1 for virus replication. Sci. Rep. 7, 43455 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mayers, C. N., Lee, K. C., Moore, C. A., Wong, S. M. & Carr, J. P. Salicylic acid-induced resistance to cucumber mosaic virus in squash and Arabidopsis thaliana: contrasting mechanisms of induction and antiviral action. Mol. Plant Microbe Interact. 18, 428–434 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bi, H. H., Zeng, R. S., Su, L. M., An, M. & Luo, S. M. Rice allelopathy induced by methyl jasmonate and methyl salicylate. J. Chem. Ecol. 33, 1089–1103 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saleh, A., Alvarez-Venegas, R. & Avramova, Z. An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants. Nat. Protoc. 3, 1018–1025 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yamaguchi, N. et al. PROTOCOLS: chromatin immunoprecipitation from Arabidopsis tissues. Arabidopsis Book 12, e0170 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, L. et al. An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. Plant J. 61, 893–903 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Slaymaker, D. H. et al. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc. Natl Acad. Sci. USA 99, 11640–11645 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *