Van Emden, H. F. & Harrington, R. Aphids as Crop Pests 2nd Edn (CABI, 2017).
Karban, R. Plant communication. Ann. Rev. Ecol. Evol. Syst. 52, 1–24 (2021).
Google Scholar
Loreto, F. & D’Auria, S. How do plants sense volatiles sent by other plants? Trends Plant Sci. 27, 29–38 (2022).
Google Scholar
Shulaev, V., Silverman, P. & Raskin, I. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 386, 738–738 (1997).
Google Scholar
Wenig, M. et al. Systemic acquired resistance networks amplify airborne defense cues. Nat. Commun. 10, 3813 (2019).
Google Scholar
Pickett, J. A. & Khan, Z. R. Plant volatile-mediated signalling and its application in agriculture: successes and challenges. N. Phytol. 212, 856–870 (2016).
Google Scholar
Sugimoto, K. et al. Identification of a tomato UDP-arabinosyltransferase for airborne volatile reception. Nat. Commun. 14, 677 (2023).
Google Scholar
Bleecker, A. B. & Schaller, G. E. The mechanism of ethylene perception. Plant Physiol. 111, 653–660 (1996).
Google Scholar
Fereres, A. & Moreno, A. Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res. 141, 158–168 (2009).
Google Scholar
Babikova, Z. et al. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol. Lett. 16, 835–843 (2013).
Google Scholar
Moreira, X., Nell, C. S., Katsanis, A., Rasmann, S. & Mooney, K. A. Herbivore specificity and the chemical basis of plant-plant communication in Baccharis salicifolia (Asteraceae). N. Phytol. 220, 703–713 (2018).
Google Scholar
Staudt, M. et al. Volatile organic compound emissions induced by the aphid Myzus persicae differ among resistant and susceptible peach cultivars and a wild relative. Tree Physiol. 30, 1320–1334 (2010).
Google Scholar
Saad, K. A., Mohamad Roff, M. N., Hallett, R. H. & Idris, A. B. Aphid-induced defences in chilli affect preferences of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Sci. Rep. 5, 13697 (2015).
Google Scholar
Dong, Y. J. & Hwang, S. Y. Cucumber Plants baited with methyl salicylate accelerates Scymnus (Pullus) sodalis (Coleoptera: Coccinellidae) visiting to reduce cotton aphid (Hemiptera: Aphididae) infestation. J. Econ. Entomol. 110, 2092–2099 (2017).
Google Scholar
Mallinger, R. E., Hogg, D. B. & Gratton, C. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. J. Econ. Entomol. 104, 115–124 (2011).
Google Scholar
Ninkovic, V., Glinwood, R., Unlu, A. G., Ganji, S. & Unelius, C. R. Effects of methyl salicylate on host plant acceptance and feeding by the aphid Rhopalosiphum padi. Front. Plant Sci. 12, 710268 (2021).
Google Scholar
Park, S. W. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 321, 342–342 (2008).
Google Scholar
Vlot, A. C., Dempsey, D. A. & Klessig, D. F. Salicylic acid, a multifaceted hormone to combat disease. Ann. Rev. Phytopathol. 47, 177–206 (2009).
Google Scholar
Dudareva, N., Raguso, R. A., Wang, J. H., Ross, E. J. & Pichersky, E. Floral scent production in Clarkia breweri—III. Enzymatic synthesis and emission of benzenoid esters. Plant Physiol. 116, 599–604 (1998).
Google Scholar
Forouhar, F. et al. Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc. Natl Acad. Sci. USA 102, 1773–1778 (2005).
Google Scholar
Wang, Y. J. et al. A calmodulin-binding transcription factor links calcium signaling to antiviral RNAi defense in plants. Cell Host Microbe 29, 1393–1406 (2021).
Google Scholar
Olsen, A. N., Ernst, H. A., Lo Leggio, L. & Skriver, K. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10, 79–87 (2005).
Google Scholar
De Clercq, I. et al. The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell 25, 3472–3490 (2013).
Google Scholar
Zhu, F. et al. Salicylic acid and jasmonic acid are essential for systemic resistance against tobacco mosaic virus in Nicotiana benthamiana. Mol. Plant Microbe Interact. 27, 567–577 (2014).
Google Scholar
Naylor, M., Murphy, A. M., Berry, J. O. & Carr, J. P. Salicylic acid can induce resistance to plant virus movement. Mol. Plant Microbe Interact. 11, 860–868 (1998).
Google Scholar
Guo, H. J. et al. Aphid-borne viral spread is enhanced by virus-induced accumulation of plant reactive oxygen species. Plant Physiol. 179, 143–155 (2019).
Google Scholar
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2021).
Arimura, G. et al. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406, 512–515 (2000).
Google Scholar
Engelberth, J., Alborn, H. T., Schmelz, E. A. & Tumlinson, J. H. Airborne signals prime plants against insect herbivore attack. Proc. Natl Acad. Sci. USA 101, 1781–1785 (2004).
Google Scholar
Karban, R., Yang, L. H. & Edwards, K. F. Volatile communication between plants that affects herbivory: a meta-analysis. Ecol. Lett. 17, 44–52 (2014).
Google Scholar
Donovan, M. P., Nabity, P. D. & DeLucia, E. H. Salicylic acid-mediated reductions in yield in Nicotiana attenuata challenged by aphid herbivory. Arthropod Plant Interact. 7, 45–52 (2013).
Google Scholar
Cao, H. H., Liu, H. R., Zhang, Z. F. & Liu, T. X. The green peach aphid Myzus persicae perform better on pre-infested Chinese cabbage Brassica pekinensis by enhancing host plant nutritional quality. Sci. Rep. 6, 21954 (2016).
Google Scholar
Blande, J. D., Korjus, M. & Holopainen, J. K. Foliar methyl salicylate emissions indicate prolonged aphid infestation on silver birch and black alder. Tree Physiol. 30, 404–416 (2010).
Google Scholar
van Poecke, R. M. P. & Dicke, M. Indirect defence of plants against herbivores: using Arabidopsis thaliana as a model plant. Plant Biol. 6, 387–401 (2004).
Google Scholar
James, D. G. Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis. J. Chem. Ecol. 29, 1601–1609 (2003).
Google Scholar
Woods, J. L., James, D. G., Lee, J. C. & Gent, D. H. Evaluation of airborne methyl salicylate for improved conservation biological control of two-spotted spider mite and hop aphid in Oregon hop yards. Exp. Appl. Acarol. 55, 401–416 (2011).
Google Scholar
Rowen, E., Gutensohn, M., Dudareva, N. & Kaplan, I. Carnivore attractant or plant elicitor? Multifunctional roles of methyl salicylate lures in tomato defense. J. Chem. Ecol. 43, 573–585 (2017).
Google Scholar
Liu, J. et al. Herbivore-Induced rice volatiles attract and affect the predation ability of the wolf spiders, Pirata subpiraticus and Pardosa pseudoannulata. Insects 13, 90 (2022).
Google Scholar
Attaran, E., Zeier, T. E., Griebel, T. & Zeier, J. Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell 21, 954–971 (2009).
Google Scholar
Kwon, S. et al. Biotic and abiotic stresses induce AbSAMT1, encoding S-adenosyl-l-methionine: salicylic acid carboxyl methyltransferase, in Atropa belladonna. Plant Biotechnol. 26, 207–215 (2009).
Google Scholar
Xu, R., Song, F. & Zheng, Z. OsBISAMT1, a gene encoding S-adenosyl-l-methionine: salicylic acid carboxyl methyltransferase, is differentially expressed in rice defense responses. Mol. Biol. Rep. 33, 223–231 (2006).
Google Scholar
Hippauf, F. et al. Enzymatic, expression and structural divergences among carboxyl O-methyltransferases after gene duplication and speciation in Nicotiana. Plant Mol. Biol. 72, 311–330 (2010).
Google Scholar
Li, R. et al. Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell 26, 4991–5008 (2014).
Google Scholar
Zhao, P. Z. et al. Viruses mobilize plant immunity to deter nonvector insect herbivores. Sci. Adv. 5, eaav9801 (2019).
Google Scholar
Tungadi, T. et al. Cucumber mosaic virus and its 2b protein alter emission of host volatile organic compounds but not aphid vector settling in tobacco. Virol. J. 14, 91 (2017).
Google Scholar
Wu, D. W. et al. Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Res. 27, 402–415 (2017).
Google Scholar
Westwood, J. H. et al. A trio of viral proteins tunes aphid-plant interactions in Arabidopsis thaliana. PLoS ONE 8, e83066 (2013).
Google Scholar
Rhee, S. J., Watt, L. G., Bravo, A. C., Murphy, A. M. & Carr, J. P. Effects of the cucumber mosaic virus 2a protein on aphid-plant interactions in Arabidopsis thaliana. Mol. Plant Pathol. 21, 1248–1254 (2020).
Google Scholar
Casteel, C. L. et al. The NIa-Pro protein of turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). Plant J. 77, 653–663 (2014).
Google Scholar
Bak, A., Cheung, A. L., Yang, C. L., Whitham, S. A. & Casteel, C. L. A viral protease relocalizes in the presence of the vector to promote vector performance. Nat. Commun. 8, 14493 (2017).
Google Scholar
Ying, X. B. et al. RNA-dependent RNA polymerase 1 from Nicotiana tabacum suppresses RNA silencing and enhances viral infection in Nicotiana benthamiana. Plant Cell 22, 1358–1372 (2010).
Google Scholar
Ma, X. et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 8, 1274–1284 (2015).
Google Scholar
Kessler, A. & Baldwin, I. T. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291, 2141–2144 (2001).
Google Scholar
Kost, C. & Heil, M. Herbivore-induced plant volatiles induce an indirect defence in neighbouring plants. J. Ecol. 94, 619–628 (2006).
Google Scholar
Ozawa, R., Arimura, G., Takabayashi, J., Shimoda, T. & Nishioka, T. Involvement of jasmonate- and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol. 41, 391–398 (2000).
Google Scholar
Feng, H. et al. Acylsugars protect Nicotiana benthamiana against insect herbivory and desiccation. Plant Mol. Biol. 109, 505–522 (2021).
Fernandez-Calvino, L., Lopez-Abella, D., Lopez-Moya, J. J. & Fereres, A. Comparison of potato virus Y and plum pox virus transmission by two aphid species in relation to their probing behavior. Phytoparasitica 34, 315–324 (2006).
Google Scholar
Verdier, M., Chesnais, Q., Pirolles, E., Blanc, S. & Drucker, M. The cauliflower mosaic virus transmission helper protein P2 modifies directly the probing behavior of the aphid vector Myzus persicae to facilitate transmission. PLoS Pathog. 19, e1011161 (2023).
Google Scholar
Xu, H. X. et al. A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proc. Natl Acad. Sci. USA 116, 490–495 (2019).
Google Scholar
Wang, Y. et al. Geminiviral V2 protein suppresses transcriptional gene silencing through interaction with AGO4. J. Virol. 93, e01675-18 (2019).
Google Scholar
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the \({2}^{-\Delta \Delta {C}_{{\rm{T}}}}\) method. Methods 25, 402–408 (2001).
Google Scholar
Wang, X. B. et al. The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana. Plant Cell 23, 1625–1638 (2011).
Google Scholar
Geng, C. et al. Tobacco vein banding mosaic virus 6K2 protein hijacks NbPsbO1 for virus replication. Sci. Rep. 7, 43455 (2017).
Google Scholar
Mayers, C. N., Lee, K. C., Moore, C. A., Wong, S. M. & Carr, J. P. Salicylic acid-induced resistance to cucumber mosaic virus in squash and Arabidopsis thaliana: contrasting mechanisms of induction and antiviral action. Mol. Plant Microbe Interact. 18, 428–434 (2005).
Google Scholar
Bi, H. H., Zeng, R. S., Su, L. M., An, M. & Luo, S. M. Rice allelopathy induced by methyl jasmonate and methyl salicylate. J. Chem. Ecol. 33, 1089–1103 (2007).
Google Scholar
Saleh, A., Alvarez-Venegas, R. & Avramova, Z. An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants. Nat. Protoc. 3, 1018–1025 (2008).
Google Scholar
Yamaguchi, N. et al. PROTOCOLS: chromatin immunoprecipitation from Arabidopsis tissues. Arabidopsis Book 12, e0170 (2014).
Google Scholar
Liu, L. et al. An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. Plant J. 61, 893–903 (2010).
Google Scholar
Slaymaker, D. H. et al. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc. Natl Acad. Sci. USA 99, 11640–11645 (2002).
Google Scholar