Zeki, S. & Shipp, S. The functional logic of cortical connections. Nature 335, 311–317 (1988).
Google Scholar
Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).
Google Scholar
Kaas, J. H. & Hackett, T. A. Subdivisions of auditory cortex and processing streams in primates. Proc. Natl Acad. Sci. USA 97, 11793–11799 (2000).
Google Scholar
Kaas, J. H. & Lyon, D. C. Pulvinar contributions to the dorsal and ventral streams of visual processing in primates. Brain Res. Rev. 55, 285–296 (2007).
Google Scholar
Wang, Q., Sporns, O. & Burkhalter, A. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex. J. Neurosci. 32, 4386–4399 (2012).
Google Scholar
Park, H. & Friston, K. Structural and functional brain networks: from connections to cognition. Science 342, 1238411 (2013).
Google Scholar
Markov, N. T. et al. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J. Comp. Neurol. 522, 225–259 (2014).
Google Scholar
Bennett, C. et al. Higher-order thalamic circuits channel parallel streams of visual information in mice. Neuron 102, 477–492 (2019).
Google Scholar
López-Bendito, G. & Molnár, Z. Thalamocortical development: how are we going to get there? Nat. Rev. Neurosci. 4, 276–289 (2003).
Google Scholar
Guillery, R. W. Is postnatal neocortical maturation hierarchical? Trends Neurosci. 28, 512–517 (2005).
Google Scholar
Luo, L. & O’Leary, D. D. M. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127–156 (2005).
Google Scholar
Bourne, J. A. & Morrone, M. C. Plasticity of visual pathways and function in the developing brain: is the pulvinar a crucial player? Front. Syst. Neurosci. 11, 3 (2017).
Google Scholar
Chomiak, T. & Hu, B. Mechanisms of hierarchical cortical maturation. Front. Cell. Neurosci. 11, 272 (2017).
Google Scholar
Godement, P., Salaün, J. & Imbert, M. Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J. Comp. Neurol. 230, 552–575 (1984).
Google Scholar
Auladell, C., Pérez-Sust, P., Supèr, H. & Soriano, E. The early development of thalamocortical and corticothalamic projections in the mouse. Anat. Embryol. 201, 169–179 (2000).
Google Scholar
Dong, H., Wang, Q., Valkova, K., Gonchar, Y. & Burkhalter, A. Experience-dependent development of feedforward and feedback circuits between lower and higher areas of mouse visual cortex. Vis. Res. 44, 3389–3400 (2004).
Google Scholar
Berezovskii, V. K., Nassi, J. J. & Born, R. T. Segregation of feedforward and feedback projections in mouse visual cortex. J. Comp. Neurol. 519, 3672–3683 (2011).
Google Scholar
Shipp, S. The functional logic of cortico–pulvinar connections. Philos. Trans. R. Soc. B 358, 1605–1624 (2003).
Google Scholar
Sherman, S. M. Thalamus plays a central role in ongoing cortical functioning. Nat. Neurosci. 19, 533–541 (2016).
Google Scholar
Zhou, N., Maire, P. S., Masterson, S. P. & Bickford, M. E. The mouse pulvinar nucleus: organization of the tectorecipient zones. Vis. Neurosci. 34, E011 (2017).
Google Scholar
Rokszin, A. et al. Visual pathways serving motion detection in the mammalian brain. Sensors 10, 3218–3242 (2010).
Google Scholar
Murakami, T., Matsui, T. & Ohki, K. Functional segregation and development of mouse higher visual areas. J. Neurosci. 37, 9424 (2017).
Google Scholar
Feldheim, D. A. & O’Leary, D. D. M. Visual map development: bidirectional signaling, bifunctional guidance molecules, and competition. Cold Spring Harb. Perspect. Biol. 2, a001768 (2010).
Google Scholar
Huberman, A. D., Feller, M. B. & Chapman, B. Mechanisms underlying development of visual maps and receptive fields. Annu. Rev. Neurosci. 31, 479–509 (2008).
Google Scholar
Erzurumlu, R. S. & Gaspar, P. Development and critical period plasticity of the barrel cortex. Eur. J. Neurosci. 35, 1540–1553 (2012).
Google Scholar
Arcaro, M. J. & Livingstone, M. S. A hierarchical, retinotopic proto-organization of the primate visual system at birth. eLife 6, e26196 (2017).
Google Scholar
Homman-Ludiye, J. & Bourne, J. A. Mapping arealisation of the visual cortex of non-primate species: lessons for development and evolution. Front. Neural Circuits 8, 79 (2014).
Google Scholar
Warner, C. E., Kwan, W. C. & Bourne, J. A. The early maturation of visual cortical area MT is dependent on input from the retinorecipient medial portion of the inferior pulvinar. J. Neurosci. 32, 17073–17085 (2012).
Google Scholar
Chou, S. et al. Geniculocortical input drives genetic distinctions between primary and higher-order visual areas. Science 340, 1239–1242 (2013).
Google Scholar
Vue, T. Y. et al. Thalamic control of neocortical area formation in mice. J. Neurosci. 33, 8442–8453 (2013).
Google Scholar
Moreno-Juan, V. et al. Prenatal thalamic waves regulate cortical area size prior to sensory processing. Nat. Commun. 8, 14172 (2017).
Google Scholar
Antón-Bolaños, N. et al. Prenatal activity from thalamic neurons governs the emergence of functional cortical maps in mice. Science 364, 987–990 (2019).
Google Scholar
Batardière, A. et al. Early specification of the hierarchical organization of visual cortical areas in the macaque monkey. Cereb. Cortex 12, 453–465 (2002).
Google Scholar
Baldwin, M. K. L., Kaskan, P. M., Zhang, B., Chino, Y. M. & Kaas, J. H. Cortical and subcortical connections of V1 and V2 in early postnatal macaque monkeys. J. Comp. Neurol. 520, 544–569 (2012).
Google Scholar
Ackman, J. B., Burbridge, T. & Crair, M. C. Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490, 219–225 (2012).
Google Scholar
Matsui, T., Murakami, T. & Ohki, K. Transient neuronal coactivations embedded in globally propagating waves underlie resting-state functional connectivity. Proc. Natl Acad. Sci. USA 113, 6556–6561 (2016).
Google Scholar
Yamada, J. et al. Ephrin-As and neural activity are required for eye-specific patterning during retinogeniculate mapping. Nat. Neurosci. 8, 1022–1027 (2005).
Google Scholar
Monavarfeshani, A., Sabbagh, U. & Fox, M. A. Not a one-trick pony: diverse connectivity and functions of the rodent lateral geniculate complex. Vis. Neurosci. 34, E012 (2017).
Google Scholar
Laing, R. J., Lasiene, J. & Olavarria, J. F. Topography of striate–extrastriate connections in neonatally enucleated rats. BioMed Res. Int. 2013, 592426–592429 (2013).
Google Scholar
Cang, J. et al. Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48, 797–809 (2005).
Google Scholar
Dye, C. A., Abbott, C. W. & Huffman, K. J. Bilateral enucleation alters gene expression and intraneocortical connections in the mouse. Neural Dev. 7, 5 (2012).
Google Scholar
Frangeul, L. et al. A cross-modal genetic framework for the development and plasticity of sensory pathways. Nature 538, 96–98 (2016).
Google Scholar
Smith, I. T., Townsend, L. B., Huh, R., Zhu, H. & Smith, S. L. Stream-dependent development of higher visual cortical areas. Nat. Neurosci. 20, 200–208 (2017).
Google Scholar
Tsukano, H. et al. Reconsidering tonotopic maps in the auditory cortex and lemniscal auditory thalamus in mice. Front. Neural Circuits 11, 14 (2017).
Google Scholar
Vanni, M. P., Chan, A. W., Balbi, M., Silasi, G. & Murphy, T. H. Mesoscale mapping of mouse cortex reveals frequency-dependent cycling between distinct macroscale functional modules. J. Neurosci. 37, 7513–7533 (2017).
Google Scholar
Adibi, M. Whisker-mediated touch system in rodents: from neuron to behavior. Front. Syst. Neurosci. 13, 40 (2019).
Google Scholar
Phillips, J. W. et al. A repeated molecular architecture across thalamic pathways. Nat. Neurosci. 22, 1925–1935 (2019).
Google Scholar
Pouchelon, G. et al. Modality‐specific thalamocortical inputs instruct the identity of postsynaptic L4 neurons. Nature 511, 471–474 (2014).
Google Scholar
Gorski, J. A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).
Google Scholar
Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013 (2011).
Google Scholar
Zariwala, H. A. et al. A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. J. Neurosci. 32, 3131–3141 (2012).
Google Scholar
Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).
Google Scholar
Peirce, J. W. PsychoPy—psychophysics software in Python. J. Neurosci. Methods 162, 8–13 (2007).
Google Scholar
Vincent, J. L. et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–86 (2007).
Google Scholar
Fratzl, A. et al. Flexible inhibitory control of visually evoked defensive behavior by the ventral lateral geniculate nucleus. Neuron 109, 3810–3822 (2021).
Google Scholar