Matsuda, M. et al. Species-specific segmentation clock periods are due to differential biochemical reaction speeds. Science 369, 1450 (2020).
Google Scholar
Rayon, T. et al. Species-specific pace of development is associated with differences in protein stability. Science 369, eaba7667 (2020).
Google Scholar
Hoyle, N. P. & Ish-Horowicz, D. Transcript processing and export kinetics are rate-limiting steps in expressing vertebrate segmentation clock genes. Proc. Natl Acad. Sci. USA 110, E4316–E4324 (2013).
Google Scholar
Stearns, S. C. The evolution of life history traits: a critique of the theory and a review of the data. Annu. Rev. Ecol. Syst. 8, 145–171 (1977).
Google Scholar
Ricklefs, R. E. Embryo development and ageing in birds and mammals. Proc. Biol. Sci. 273, 2077–2082 (2006).
Blagosklonny, M. V. Big mice die young but large animals live longer. Aging 5, 227–233 (2013).
Google Scholar
Otis, E. M. & Brent, R. Equivalent ages in mouse and human embryos. Anat. Rec. 120, 33–63 (1954).
Google Scholar
Schröter, C. et al. Dynamics of zebrafish somitogenesis. Dev. Dyn. 237, 545–553 (2008).
Google Scholar
Pourquié, O. Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell 145, 650–663 (2011).
Google Scholar
Hubaud, A. & Pourquie, O. Signalling dynamics in vertebrate segmentation. Nat. Rev. Mol. Cell Biol. 15, 709–721 (2014).
Google Scholar
Diaz-Cuadros, M. et al. In vitro characterization of the human segmentation clock. Nature 580, 113–118 (2020).
Google Scholar
Matsuda, M. et al. Recapitulating the human segmentation clock with pluripotent stem cells. Nature 580, 124–129 (2020).
Google Scholar
Chu, L. F. et al. An in vitro human segmentation clock model derived from embryonic stem cells. Cell Rep. 28, 2247–2255.e5 (2019).
Google Scholar
Matsumiya, M. et al. ES cell-derived presomitic mesoderm-like tissues for analysis of synchronized oscillations in the segmentation clock. Development 145, dev156836 (2018).
Google Scholar
Hubaud, A. et al. Excitable dynamics and Yap-dependent mechanical cues drive the segmentation clock. Cell 171, 668–682.e11 (2017).
Google Scholar
Johnson, M. H. & Day, M. L. Egg timers: how is developmental time measured in the early vertebrate embryo? Bioessays 22, 57–63 (2000).
Google Scholar
Kleiber, M. Body size and metabolic rate. Physiol. Rev. 27, 511–541 (1947).
Google Scholar
Martin, R. D., Genoud, M. & Hemelrijk, C. K. Problems of allometric scaling analysis: examples from mammalian reproductive biology. J. Exp. Biol. 208, 1731–1747 (2005).
Google Scholar
Feijó Delgado, F. et al. Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells. PLoS ONE 8, e67590 (2013).
Google Scholar
Miettinen, T. P. et al. Single-cell monitoring of dry mass and dry mass density reveals exocytosis of cellular dry contents in mitosis. eLife 11, e76664 (2022).
Google Scholar
Oginuma, M. et al. A gradient of glycolytic activity coordinates FGF and Wnt signaling during elongation of the body axis in amniote embryos. Dev. Cell 40, 342–353.e10 (2017).
Google Scholar
Bulusu, V. et al. Spatiotemporal analysis of a glycolytic activity gradient linked to mouse embryo mesoderm development. Dev. Cell 40, 331–341.e4 (2017).
Google Scholar
Porter, R. K. Allometry of mammalian cellular oxygen consumption. Cell. Mol. Life Sci. 58, 815–822 (2001).
Google Scholar
Porter, R. K., Hulbert, A. J. & Brand, M. D. Allometry of mitochondrial proton leak: influence of membrane surface area and fatty acid composition. Am. J. Physiol. 271, R1550–R1560 (1996).
Google Scholar
Harris, M. Pyruvate blocks expression of sensitivity to antimycin A and chloramphenicol. Somatic Cell Genet. 6, 699–708 (1980).
Google Scholar
Luengo, A. et al. Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Mol. Cell 81, 691–707.e6 (2021).
Google Scholar
Hung, Y. P. et al. Imaging cytosolic NADH–NAD+ redox state with a genetically encoded fluorescent biosensor. Cell Metab. 14, 545–554 (2011).
Google Scholar
Titov, D. V. et al. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science 352, 231–235 (2016).
Google Scholar
Merker, M. P. et al. Influence of pulmonary arterial endothelial cells on quinone redox status: effect of hyperoxia-induced NAD(P)H:quinone oxidoreductase 1. Am. J. Physiol. 290, L607–L619 (2006).
Google Scholar
Fessel, J. P. & Oldham, W. M. Pyridine dinucleotides from molecules to man. Antioxid. Redox Signal. 28, 180–212 (2017).
Google Scholar
Williamson, D. H., Lund, P. & Krebs, H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103, 514–527 (1967).
Google Scholar
Veech, R. L., Guynn, R. & Veloso, D. The time-course of the effects of ethanol on the redox and phosphorylation states of rat liver. Biochem. J. 127, 387–397 (1972).
Google Scholar
das Neves, R. P. et al. Connecting variability in global transcription rate to mitochondrial variability. PLoS Biol. 8, e1000560 (2010).
Google Scholar
Johnston, I. G. et al. Mitochondrial variability as a source of extrinsic cellular noise. PLoS Comput. Biol. 8, e1002416 (2012).
Google Scholar
Guantes, R. et al. Global variability in gene expression and alternative splicing is modulated by mitochondrial content. Genome Res. 25, 633–644 (2015).
Google Scholar
Hidalgo San Jose, L. & Signer, R. A. J. Cell-type-specific quantification of protein synthesis in vivo. Nat. Protoc. 14, 441–460 (2019).
Google Scholar
Schmidt, E. K. et al. SUnSET, a nonradioactive method to monitor protein synthesis. Nat. Methods 6, 275–277 (2009).
Google Scholar
Bessho, Y. et al. Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock. Genes Dev. 17, 1451–1456 (2003).
Google Scholar
Bonvini, P. et al. Bortezomib-mediated 26S proteasome inhibition causes cell-cycle arrest and induces apoptosis in CD-30+ anaplastic large cell lymphoma. Leukemia 21, 838–842 (2007).
Google Scholar
Gomez, C. et al. Control of segment number in vertebrate embryos. Nature 454, 335–339 (2008).
Google Scholar
Hosios, A. M. & Vander Heiden, M. G. The redox requirements of proliferating mammalian cells. J. Biol. Chem. 293, 7490–7498 (2018).
Google Scholar
Covarrubias, A. J. et al. NAD+ metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 22, 119–141 (2021).
Google Scholar
Fushan, A. A. et al. Gene expression defines natural changes in mammalian lifespan. Aging Cell 14, 352–365 (2015).
Google Scholar
Bao, X. R. et al. Mitochondrial dysfunction remodels one-carbon metabolism in human cells. eLife 5, e10575 (2016).
Google Scholar
Mick, E. et al. Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell. eLife 9, e49178 (2020).
Google Scholar
Chal, J. et al. Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat. Biotechnol. 33, 962–969 (2015).
Google Scholar
Chal, J. et al. Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm in vitro. Development 145, dev157339 (2018).
Google Scholar
Chal, J. et al. Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nat. Protoc. 11, 1833–1850 (2016).
Google Scholar
Tomishima, M. in StemBook (Harvard Stem Cell Institute, 2008).
Oceguera-Yanez, F. et al. Engineering the AAVS1 locus for consistent and scalable transgene expression in human iPSCs and their differentiated derivatives. Methods 101, 43–55 (2016).
Google Scholar
Yellen, G. & Mongeon, R. Quantitative two-photon imaging of fluorescent biosensors. Curr. Opin. Chem. Biol. 27, 24–30 (2015).
Google Scholar
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
Google Scholar
Aulehla, A. et al. A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nat. Cell Biol. 10, 186–193 (2008).
Google Scholar
Dequéant, M. L. et al. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314, 1595–1598 (2006).
Google Scholar
Krol, A. J. et al. Evolutionary plasticity of segmentation clock networks. Development 138, 2783–2792 (2011).
Google Scholar
Oppenheim, A. V., Schafer, R. W. & Buck., J. R. Discrete-Time Signal Processing. 2nd edn (Prentice Hall, 1999).
Rosenblum, M. & Kurths, J. Synchronization: A Universal Concept in Nonlinear Science (Cambridge Univ. Press, 2003).
Bharadwaj, M. S. Preparation and respirometric assessment of mitochondria isolated from skeletal muscle tissue obtained by percutaneous needle biopsy. J. Vis. Exp. 96, 52350 (2015).
Kim, D. et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520, 363–367 (2015).
Google Scholar
Fernandez, C. A. et al. Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J. Mass Spectrom. 31, 255–262 (1996).
Google Scholar
Mu, L. et al. Mass measurements during lymphocytic leukemia cell polyploidization decouple cell cycle- and cell size-dependent growth. Proc Natl Acad Sci USA 117, 15659–15665 (2020).
Google Scholar
Sheaff, R., Ilsley, D. & Kuchta, R. Mechanism of DNA polymerase α inhibition by aphidicolin. Biochemistry 30, 8590–8597 (1991).
Google Scholar
Palmer, G. et al. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XIV. Location of the sites of inhibition of rotenone, barbiturates, and piericidin by means of electron paramagnetic resonance spectroscopy. J. Biol. Chem. 243, 844–847 (1968).
Google Scholar
Miyadera, H. et al. Atpenins potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase). Proc. Natl Acad. Sci. USA 100, 473–477 (2003).
Google Scholar
Slater, E. C. The mechanism of action of the respiratory inhibitor antimycin. Biochim. Biophys. Acta Rev. Bioenerg. 301, 129–154 (1973).
Google Scholar
Keilin, D. The action of sodium azide on cellular respiration and on some catalytic oxidation reactions. Proc. R. Soc. B. Biol. Sci. 121, 165–173 (1936).
Google Scholar
Kankotia, S. & Stacpoole, P. W. Dichloroacetate and cancer: new home for an orphan drug? Biochem. Biophys. Acta Rev. Cancer 1846, 617–629 (2014).
Google Scholar
Benz, R. & McLaughlin, S. The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone). Biophys. J. 41, 381–398 (1983).
Google Scholar
Racker, E. A mitochondrial factor conferring oligomycin sensitivity on soluble mitochondrial ATPase. Biochem. Biophys. Res. Commun. 10, 435–439 (1963).
Google Scholar
Baliga, B. S., Pronczuk, A. W. & Munro, H. N Mechanism of cycloheximide inhibition of protein synthesis in a cell-free system prepared from rat liver. J. Biol. Chem. 244, 4480–4489 (1969).
Google Scholar
Fu, Z., Lu, C., Zhang, C. & Qiao, B. PSMA5 promotes the tumorigenic process of prostate cancer and is related to bortezomib resistance. Anti-Cancer Drugs 30, 722–730 (2019).
Google Scholar
Dick, L. R. et al. Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J. Biol. Chem. 272, 182–188 (1997).
Google Scholar
Zhou, M. et al. Warburg effect in chemosensitivity: targeting lactate dehydrogenase-A re-sensitizes taxol-resistant cancer cells to taxol. Mol. Cancer 9, 33 (2010).
Google Scholar
Aguer, C. et al. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLoS ONE 6, e28536 (2011).
Google Scholar