Strange India All Strange Things About India and world


  • Banerjee, A. & Wani, B. A. Exponentially decreasing erosion rates protect the high-elevation crests of the Himalaya. Earth Planet. Sci. Lett. 497, 22–28 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Scherler, D. Climatic limits to headwall retreat in the Khumbu Himalaya, eastern Nepal. Geology 42, 1019–1022 (2014).

    ADS 

    Google Scholar 

  • Brozovic, N., Burbank, D. W. & Meigs, A. J. Climatic limits on landscape development in the northwestern Himalaya. Science 276, 571–574 (1997).

    CAS 

    Google Scholar 

  • Burbank, D. W. et al. Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379, 505–510 (1996).

    ADS 
    CAS 

    Google Scholar 

  • Molnar, P. & England, P. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346, 29–34 (1990).

    ADS 

    Google Scholar 

  • Montgomery, D. R., Balco, G. & Willett, S. D. Climate, tectonics, and the morphology of the Andes. Geology 29, 579–582 (2001).

    ADS 

    Google Scholar 

  • Egholm, D. L., Nielsen, S. B., Pedersen, V. K. & Lesemann, J. E. Glacial effects limiting mountain height. Nature 460, 884–887 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Scherler, D., Bookhagen, B. & Strecker, M. R. Hillslope‐glacier coupling: the interplay of topography and glacial dynamics in High Asia. J. Geophys. Res. Earth Surf. 116, F02019 (2011).

    ADS 

    Google Scholar 

  • Thomson, S. N. et al. Glaciation as a destructive and constructive control on mountain building. Nature 467, 313–317 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Valla, P. G., Shuster, D. L. & van der Beek, P. A. Significant increase in relief of the European Alps during mid-Pleistocene glaciations. Nat. Geosci. 4, 688–692 (2011).

    ADS 
    CAS 

    Google Scholar 

  • Ward, D. J., Anderson, R. S. & Haeussler, P. J. Scaling the Teflon Peaks: rock type and the generation of extreme relief in the glaciated western Alaska Range. J. Geophys. Res. Earth Surf. 117, F01031 (2012).

    ADS 

    Google Scholar 

  • Brocklehurst, S. H. & Whipple, K. X. Response of glacial landscapes to spatial variations in rock uplift rate. J. Geophys. Res. Earth Surf. 112, F02035 (2007).

    ADS 

    Google Scholar 

  • Heimsath, A. M. & McGlynn, R. Quantifying periglacial erosion in the Nepal high Himalaya. Geomorphology 97, 5–23 (2008).

    ADS 

    Google Scholar 

  • Seong, Y. B. et al. Rates of basin-wide rockwall retreat in the K2 region of the Central Karakoram defined by terrestrial cosmogenic nuclide 10Be. Geomorphology 107, 254–262 (2009).

    ADS 

    Google Scholar 

  • Scherler, D. & Egholm, D. L. Production and transport of supraglacial debris: insights from cosmogenic 10Be and numerical modeling, Chhota Shigri Glacier, Indian Himalaya. J. Geophys. Res. Earth Surf. 125, e2020JF005586 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Orr, E. N., Owen, L. A., Saha, S., Hammer, S. J. & Caffee, M. W. Rockwall slope erosion in the northwestern Himalaya. J. Geophys. Res. Earth Surf. 126, e2020JF005619 (2021).

    ADS 

    Google Scholar 

  • Hovius, N., Stark, C. P. & Allen, P. A. Sediment flux from a mountain belt derived by landslide mapping. Geology 25, 231–234 (1997).

    ADS 

    Google Scholar 

  • Larsen, I. J. & Montgomery, D. R. Landslide erosion coupled to tectonics and river incision. Nat. Geosci. 5, 468–473 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Marc, O. et al. Long-term erosion of the Nepal Himalayas by bedrock landsliding: the role of monsoons, earthquakes and giant landslides. Earth Surf. Dyn. 7, 107–128 (2019).

    ADS 

    Google Scholar 

  • Shugar, D. H. et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 373, 300–306 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Roback, K. et al. The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal. Geomorphology 301, 121–138 (2018).

    ADS 

    Google Scholar 

  • Pandey, M. R., Tandukar, R. P., Avouac, J. P., Lave, J. & Massot, J. P. Interseismic strain accumulation on the Himalayan crustal ramp (Nepal). Geophys. Res. Lett. 22, 751–754 (1995).

    ADS 

    Google Scholar 

  • Lavé, J. et al. Evidence for a Great Medieval Earthquake (~1100 A.D.) in the Central Himalayas, Nepal. Science 307, 1302–1305 (2005).

    ADS 
    PubMed 

    Google Scholar 

  • Bollinger, L. et al. Estimating the return times of great Himalayan earthquakes in eastern Nepal: evidence from the Patu and Bardibas strands of the Main Frontal Thrust. J. Geophys. Res. Solid Earth 119, 7123–7163 (2014).

    ADS 

    Google Scholar 

  • Lavé, J. & Avouac, J. P. Fluvial incision and tectonic uplift across the Himalayas of Central Nepal. J. Geophys. Res. 106, 26561–26591 (2001).

    ADS 

    Google Scholar 

  • Burbank, D. W. et al. Decoupling of erosion and precipitation in the Himalayas. Nature 426, 652–655 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Godard, V. et al. Impact of glacial erosion on 10Be concentrations in fluvial sediments of the Marsyandi catchment, central Nepal. J. Geophys. Res. Earth Surf. 117, F03013 (2012).

    ADS 

    Google Scholar 

  • Colchen, M., Le Fort, P., & Pêcher, A. Recherches Géologiques dans l’Himalaya du Népal (CNRS, 1986).

  • Godin, L. Structural evolution of the Tethyan sedimentary sequence in the Annapurna area, central Nepal Himalaya. J. Asian Earth Sci. 22, 307–328 (2003).

    ADS 

    Google Scholar 

  • Fort, M. Sporadic morphogenesis in a continental subduction setting: an example from the Annapurna Range, Nepal Himalaya. Z. Geomorphol. 63, 36 (1987).

    Google Scholar 

  • Weidinger, J. T. et al. Giant rockslides from the inside. Earth Planet. Sci. Lett. 389, 62–73 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Bowman, E. T., Take, W. A., Rait, K. L. & Hann, C. Physical models of rock avalanche spreading behaviour with dynamic fragmentation. Can. Geotech. J. 49, 460–476 (2012).

    Google Scholar 

  • Weidinger, J. T., Schramm, J.-M. & Surenian, R. On preparatory causal factors, initiating the prehistoric Tsergo Ri landslide (Langthang Himal, Nepal). Tectonophysics 260, 95–107 (1996).

    ADS 

    Google Scholar 

  • Weidinger, J. T. Predesign, failure and displacement mechanisms of large rockslides in the Annapurna Himalayas, Nepal. Eng. Geol. 83, 201–216 (2006).

    Google Scholar 

  • Bateman, M. D., Swift, D. A., Piotrowski, J. A., Rhodes, E. J. & Damsgaard, A. Can glacial shearing of sediment reset the signal used for luminescence dating? Geomorphology 306, 90–101 (2018).

    ADS 

    Google Scholar 

  • Schwanghart, W. et al. Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya. Science 351, 147–150 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Stolle, A. et al. Catastrophic valley fills record large Himalayan earthquakes, Pokhara, Nepal. Quat. Sci. Rev. 177, 88–103 (2017).

    ADS 

    Google Scholar 

  • Stolle, A. et al. Protracted river response to medieval earthquakes. Earth Surf. Process. Landf. 44, 331–341 (2019).

    ADS 

    Google Scholar 

  • Lupker, M. et al. A Rouse‐based method to integrate the chemical composition of river sediments: application to the Ganga basin. J. Geophys. Res. Earth Surf. 116, F04012 (2011).

    ADS 

    Google Scholar 

  • Hayes, S. K., Montgomery, D. R. & Newhall, C. G. Fluvial sediment transport and deposition following the 1991 eruption of Mount Pinatubo. Geomorphology 45, 211–224 (2002).

    ADS 

    Google Scholar 

  • Lupker, M. et al. 10Be-derived Himalayan denudation rates and sediment budgets in the Ganga basin. Earth Planet. Sci. Lett. 333–334, 146–156 (2012).

    ADS 

    Google Scholar 

  • Morin, G. P. et al. Annual sediment transport dynamics in the Narayani basin, Central Nepal: assessing the impacts of erosion processes in the annual sediment budget. J. Geophys. Res. Earth Surf. 123, 2341–2376 (2018).

    ADS 

    Google Scholar 

  • Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 1256–1260 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fort, M. Two large late Quaternary rock slope failures and their geomorphic significance, Annapurna Himalayas (Nepal). Geogr. Fis. Din. Quat. 34, 5–14 (2011).

    Google Scholar 

  • Gabet, E. J., Pratt-Sitaula, B. A. & Burbank, D. W. Climatic controls on hillslope angle and relief in the Himalayas. Geology 32, 629–632 (2004).

    ADS 

    Google Scholar 

  • Schmidt, K. M. & Montgomery, D. R. Limits to relief. Science 270, 617–620 (1995).

    ADS 
    CAS 

    Google Scholar 

  • Gallen, S. F., Clark, M. K. & Godt, J. W. Coseismic landslides reveal near-surface rock strength in a high-relief, tectonically active setting. Geology 43, 11–14 (2015).

    ADS 

    Google Scholar 

  • Davies, M. C. R., Hamza, O., Lumsden, B. W. & Harris, C. Laboratory measurement of the shear strength of ice-filled rock joints. Ann. Glaciol. 31, 463–467 (2000).

    ADS 

    Google Scholar 

  • Gruber, S. & Haeberli, W. Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J. Geophys. Res. Earth Surf. 112, F02S18 (2007).

    ADS 

    Google Scholar 

  • Pedersen, V. K., Egholm, D. L. & Nielsen, S. B. Alpine glacial topography and the rate of rock column uplift: a global perspective. Geomorphology 122, 129–139 (2010).

    ADS 

    Google Scholar 

  • Dumoulin, J. P. et al. Status report on sample preparation protocols developed at the LMC14 Laboratory, Saclay, France: from sample collection to 14C AMS measurement. Radiocarbon 59, 713–726 (2017).

    CAS 

    Google Scholar 

  • Moreau, C. et al. Research and development of the Artemis 14C AMS Facility: status report. Radiocarbon 55, 331–337 (2013).

    CAS 

    Google Scholar 

  • Mook, W. G. & van der Plicht, J. Reporting 14C activities and concentrations. Radiocarbon 41, 227–239 (1999).

    CAS 

    Google Scholar 

  • Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    CAS 

    Google Scholar 

  • Stone, J. O., Allan, G. L., Fifield, L. K. & Cresswell, R. G. Cosmogenic chlorine-36 from calcium spallation. Geochim. Cosmochim. Acta 60, 679–692 (1996).

    ADS 
    CAS 

    Google Scholar 

  • Schlagenhauf, A. et al. Using in situ Chlorine-36 cosmonuclide to recover past earthquake histories on limestone normal fault scarps: a reappraisal of methodology and interpretations. Geophys. J. Int. 182, 36–72 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Putkonen, J. K. Continuous snow and rain data at 500 to 4400 m altitude altitude near Annapurna, Nepal, 1999–2001. Arct. Antarct. Alp. Res. 36, 244–248 (2004).

    Google Scholar 

  • Diaz, N., King, G. E., Valla, P. G., Herman, F. & Verrecchia, E. Pedogenic carbonate nodules as soil time archives: challenges and investigations related to OSL dating. Quat. Geochronol. 36, 120–133 (2016).

    Google Scholar 

  • Durcan, J. A., King, G. E. & Duller, G. A. T. DRAC: Dose Rate and Age Calculator for trapped charge dating. Quat. Geochronol. 28, 54–61 (2015).

    Google Scholar 

  • Buylaert, J. P., Murray, A. S., Thomsen, K. J. & Jain, M. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiat. Meas. 44, 560–565 (2009).

    CAS 

    Google Scholar 

  • Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H. & Olley, J. M. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part I, experimental design and statistical models. Archaeometry 41, 339–364 (1999).

    Google Scholar 

  • Huntley, D. J. & Lamothe, M. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Can. J. Earth Sci. 38, 1093–1106 (2011).

    Google Scholar 

  • Govi, M., Gullà, G. & Nicoletti, P. G. in Catastrophic Landslides: Effects, Occurrence, and Mechanisms (eds Evans, S. G. & Degraff, J. V.) (Geological Society of America, 2002).

  • Oi, H., Higaki, D., Yagi, H., Usuki, N. & Yoshino, K. Report of the investigation of the flood disaster that occurred on May 5, 2012 along the Seti River in Nepal. Int. J. Eros. Control Eng. 7, 111–117 (2014).

    Google Scholar 

  • Xie, M., Esaki, T., Qiu, C. & Wang, C. Geographical information system-based computational implementation and application of spatial three-dimensional slope stability analysis. Comput. Geotech. 33, 260–274 (2006).

    Google Scholar 

  • Mergili, M., Marchesini, I., Rossi, M., Guzzetti, F. & Fellin, W. Spatially distributed three-dimensional slope stability modelling in a raster GIS. Geomorphology 206, 178–195 (2014).

    ADS 

    Google Scholar 

  • Hovland, H. J. Three-dimensional slope stability analysis method. J. Geotech. Eng. Div. 103, 971–986 (1977).

    Google Scholar 

  • Hungr, O., Salgado, F. M. & Byrne, P. M. Evaluation of a three-dimensional method of slope stability analysis. Can. Geotech. J. 26, 679–686 (1989).

    Google Scholar 

  • Leshchinsky, D., Baker, R. & Silver, M. L. Three dimensional analysis of slope stability. Int. J. Numer. Anal. Methods Geomech. 9, 199–223 (1985).

    MathSciNet 
    MATH 

    Google Scholar 

  • Byerlee, J. in Rock Friction and Earthquake Prediction (eds Byerlee, J. D. & Wyss, M.) 615–626 (Birkhäuser Basel, 1978).

  • Parsons, A. J., Law, R. D., Searle, M. P., Phillips, R. J. & Lloyd, G. E. Geology of the Dhaulagiri-Annapurna-Manaslu Himalaya, Western Region, Nepal. 1:200,000. J. Maps 12, 100–110 (2016).

    Google Scholar 

  • Morin, G. L’érosion et l’altération en Himalaya et leur évolution depuis le tardi-pléistocène: analyse des processus d’érosion à partir de sédiments de rivière actuels et passés au Népal central. Doctoral dissertation, Univ. Lorraine (2015).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *