Strange India All Strange Things About India and world


  • 1.

    Luo, M. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 574, 81–85 (2019).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 2.

    Li, M. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2, 495–503 (2019).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Zhang, L. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349, 412–416 (2015).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 4.

    Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998).

    Article 
    ADS 

    Google Scholar 

  • 5.

    Hammer, B. & Nørskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 45, 71–129 (2000).

    CAS 

    Google Scholar 

  • 6.

    Beckord, S., Brimaud, S. & Behm, R. J. Stability and ORR performance of a well-defined bimetallic Ag70Pt30/Pt(111) monolayer surface alloy electrode-probing the de-alloying at an atomic scale. Electrochim. Acta 259, 762–771 (2018).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Wu, J. et al. Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chem. Soc. Rev. 41, 8066–8074 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Bu, L. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354, 1410–1414 (2016).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 10.

    Wang, X. et al. Palladium-platinum core–shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 6, 7594 (2015).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 11.

    Wang, H. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354, 1031–1036 (2016).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 12.

    Xie, S. et al. Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett. 14, 3570–3576 (2014).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 13.

    Koh, S. & Strasser, P. Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc. 129, 12624–12625 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    He, T. et al. Inflating hollow nanocrystals through a repeated Kirkendall cavitation process. Nat. Commun. 8, 1261 (2017).

    Article 
    CAS 

    Google Scholar 

  • 15.

    Li, X. et al. Coordination effect assisted synthesis of ultrathin Pt layers on second metal nanocrystals as efficient oxygen reduction electrocatalysts. J. Mater. Chem. A 4, 13033–13039 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 16.

    Li, J. et al. Hard-magnet L1O-CoPt nanoparticles advance fuel cell catalysis. Joule 3, 124–135 (2019).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Wang, W., Li, X., He, T., Liu, Y. & Jin, M. Engineering surface structure of Pt nanoshells on Pd nanocubes to preferentially expose active surfaces for ORR by manipulating the growth kinetics. Nano Lett. 19, 1743–1748 (2019).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 18.

    Jin, M. et al. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes < 10 nm for application in CO oxidation. Nano Res. 4, 83–91 (2011).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Henkes, A. E., Vasquez, Y. & Schaak, R. E. Converting metals into phosphides: a general strategy for the synthesis of metal phosphide nanocrystals. J. Am. Chem. Soc. 129, 1896–1897 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Kitchin, J. R., Nørskov, J. K., Barteau, M. A. & Chen, J. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 93, 156801 (2004).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 21.

    Wang, L. et al. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 363, 870–874 (2019).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 22.

    Feng, Q. et al. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 140, 2773–2776 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Danilovic, N., Subbaraman, R., Strmcnik, D., Stamenkovic, V. R. & Markovic, N. M. Electrocatalysis of the HER in acid and alkaline media. J. Serb. Chem. Soc.78, 2007–2015 (2013).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Kang, Y., Yang, P., Markovic, N. M. & Stamenkovic, V. R. Shaping electrocatalysis through tailored nanomaterials. Nano Today 11, 587–600 (2016).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Ferrin, P. & Mavrikakis, M. Structure sensitivity of methanol electrooxidation on transition metals. J. Am. Chem. Soc. 131, 14381–14389 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Chang, S. C. & Weaver, M. J. Influence of coadsorbed bismuth and copper on carbon monoxide adlayer structures at ordered low-index platinum-aqueous interfaces. Surf. Sci.241, 11–24 (1991).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 27.

    Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334, 1256–1260 (2011).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 28.

    Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 29.

    Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Gu, G. H. et al. Autobifunctional mechanism of jagged Pt nanowires for hydrogen evolution kinetics via end-to-end simulation. J. Am. Chem. Soc. 143, 5355–5363 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article 

    Google Scholar 

  • 32.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 33.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Nørskov, J. K., Rossmeisl, J., Logadottir, A. & Lindqvist, L. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article 
    CAS 

    Google Scholar 

  • 35.

    Rossmeisl, J., Qu, Z.-W., Zhu, H., Kroes, G.-J. & Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Ceperley, D. M. & Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566-569 (1980).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 37.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article 
    ADS 

    Google Scholar 

  • 38.

    Pearson, W. B. A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon Press, 1958).

  • 39.

    Yoo, J. S., Abild-Pedersen, F., Nørskov, J. K. & Studt, F. Theoretical analysis of transition-metal catalysts for formic acid decomposition. ACS Catal. 4, 1226–1233 (2014).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Bu, L. et al. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun. 7, 11850 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 41.

    Ding, J. et al. Morphology and phase controlled construction of Pt–Ni nanostructures for efficient electrocatalysis. Nano Lett. 16, 2762–2767 (2016).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 42.

    Ma, S. Y. et al. Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity. J. Am. Chem. Soc. 139, 5890–5895 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Li, J. et al. Ternary CoPtAu nanoparticles as a general catalyst for highly efficient electro-oxidation of liquid fuels. Angew. Chem. Int. Ed. 131, 11651–11657 (2019).

    Article 
    ADS 

    Google Scholar 

  • 44.

    Zhao, W. Y. et al. Highly active and durable Pt72Ru28 porous nanoalloy assembled with sub-4.0 nm particles for methanol oxidation. Adv. Energy Mater. 7, 1601593 (2017).

    Article 
    CAS 

    Google Scholar 

  • 45.

    Zhang, W. et al. Ultrathin PtNiM (M= Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials. Adv. Mater. 31, 1805833 (2019).

    Article 
    CAS 

    Google Scholar 

  • 46.

    Liu, H. et al. Ultrathin Pt–Ag alloy nanotubes with regular nanopores for enhanced electrocatalytic activity. Chem. Mater. 30, 7744–7751 (2018).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Li, H. H. et al. Highly crystalline PtCu nanotubes with three dimensional molecular accessible and restructured surface for efficient catalysis. Energy Environ. Sci. 10, 1751–1756 (2017).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Luo, S. & Shen, P. K. Concave platinum–copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis. ACS Nano 11, 11946–11953 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Yin, H. et al. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 6, 6430 (2015).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 50.

    Wang, P. et al. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat. Commun. 8, 14580 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 51.

    Alinezhad, A. et al. Direct growth of highly strained Pt islands on branched Ni nanoparticles for improved hydrogen evolution reaction activity. J. Am. Chem. Soc. 141, 16202–16207 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Liu, Z. et al. Aqueous synthesis of ultrathin platinum/non-noble metal alloy nanowires for enhanced hydrogen evolution activity. Angew. Chem. Int. Ed. 57, 11678–11682 (2018).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Fang, C. et al. Engineering of hollow PdPt nanocrystals via reduction kinetic control for their Superior electrocatalytic performances. ACS Appl. Mater. Interfaces 10, 29543–29551 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Zhang, J. et al. PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities. Nanoscale 8, 3962–3972 (2016).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 55.

    Liu, Y. et al. Composition-controlled synthesis of bimetallic PdPt nanoparticles and their electro-oxidation of methanol. Chem. Mater.23, 4199–4203 (2011).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Kakade, B. A. et al. Highly active bimetallic PdPt and CoPt nanocrystals for methonal electro-oxidation. J. Phys. Chem. C 116, 7464–7470 (2012).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Stull, D. R. & Propher, H. JANAF Thermochemical Tables (US National Bureau of Standards, 1971).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *