Strange India All Strange Things About India and world


  • Smith, K. E. et al. Biological impacts of marine heatwaves. Annu. Rev. Mar. Sci. 15, 119–145 (2023).

  • Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    Article 
    ADS 

    Google Scholar 

  • Cheung, W. W. L. et al. Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Sci. Adv. 7, eabh0895 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).

    Article 
    ADS 

    Google Scholar 

  • Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    Article 
    ADS 

    Google Scholar 

  • Auth, T. D., Daly, E. A., Brodeur, R. D. & Fisher, J. L. Phenological and distributional shifts in ichthyoplankton associated with recent warming in the northeast Pacific Ocean. Glob. Change Biol. 24, 259–272 (2018).

    Article 
    ADS 

    Google Scholar 

  • Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Le Grix, N., Zscheischler, J., Rodgers, K. B., Yamaguchi, R. & Frölicher, T. L. Hotspots and drivers of compound marine heatwaves and low net primary production extremes. Biogeosciences 19, 5807–5835 (2022).

    Article 
    ADS 

    Google Scholar 

  • Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Change 11, 973–981 (2021).

  • Mills, K. et al. Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the northwest Atlantic. Oceanography 26, 191–195 (2013).

  • Barbeaux, S. J., Holsman, K. & Zador, S. Marine heatwave stress test of ecosystem-based fisheries management in the Gulf of Alaska Pacific cod fishery. Front. Mar. Sci. 7, 703 (2020).

    Article 

    Google Scholar 

  • Cavole, L. et al. Biological impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).

  • The State of World Fisheries and Aquaculture 2020 (FAO, 2020); https://doi.org/10.4060/ca9229en.

  • Oliver, E. C. J. et al. Marine heatwaves. Annu. Rev. Mar. Sci. 13, 313–342 (2021).

  • Liu, G. et al. Reef-scale thermal stress monitoring of coral ecosystems: new 5-km global products from NOAA Coral Reef Watch. Remote Sens. 6, 11579–11606 (2014).

    Article 
    ADS 

    Google Scholar 

  • Craig, J. K. et al. Ecosystem Status Report for the U.S. South Atlantic Region (National Oceanic and Atmospheric Administration, 2021); https://doi.org/10.25923/qmgr-pr03.

  • Turcotte, F., Swain, D. P., McDermid, J. L. & DeLong, R. A. Assessment of the NAFO Division 4TVn Southern Gulf of St. Lawrence Atlantic Herring (Clupea harengus) in 2018–2019 (Canadian Science Advisory Secretariat, 2021).

  • Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ives, A. R., Dennis, B., Cottingham, K. L. & Carpenter, S. R. Estimating community stability and ecological interactions from time-series data. Ecol. Monogr. 73, 301–330 (2003).

    Article 

    Google Scholar 

  • Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: global issues and opportunities. Science 374, eabj3593 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the Equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McLean, M. et al. Disentangling tropicalization and deborealization in marine ecosystems under climate change. Curr. Biol. 31, 4817–4823 (2021).

  • Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).

    Article 
    ADS 

    Google Scholar 

  • Freedman, R. M., Brown, J. A., Caldow, C. & Caselle, J. E. Marine protected areas do not prevent marine heatwave-induced fish community structure changes in a temperate transition zone. Sci. Rep. 10, 21081 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Robinson, J. P. W., Wilson, S. K., Jennings, S. & Graham, N. A. J. Thermal stress induces persistently altered coral reef fish assemblages. Glob. Change Biol. 25, 2739–2750 (2019).

    Article 
    ADS 

    Google Scholar 

  • Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J. & McGill, B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 6, 8405 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Baselga, A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 4, 552–557 (2013).

    Article 

    Google Scholar 

  • Alabia, I. D. et al. Marine biodiversity refugia in a climate-sensitive subarctic shelf. Glob. Change Biol. 27, 3299–3311 (2021).

    Article 

    Google Scholar 

  • Catford, J. A., Wilson, J. R. U., Pyšek, P., Hulme, P. E. & Duncan, R. P. Addressing context dependence in ecology. Trends Ecol. Evol. 37, 158–170 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Schindler, D. E., Armstrong, J. B. & Reed, T. E. The portfolio concept in ecology and evolution. Front. Ecol. Environ. 13, 257–263 (2015).

    Article 

    Google Scholar 

  • Thorson, J. T., Scheuerell, M. D., Olden, J. D. & Schindler, D. E. Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes. Proc. R. Soc. B 285, 20180915 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Chesson, P. L. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276 (1994).

    Article 
    MATH 

    Google Scholar 

  • Kjesbu, O. S. et al. Highly mixed impacts of near-future climate change on stock productivity proxies in the north east Atlantic. Fish Fish. 23, 601–615 (2022).

    Article 

    Google Scholar 

  • Brown, C. J., Mellin, C., Edgar, G. J., Campbell, M. D. & Stuart‐Smith, R. D. Direct and indirect effects of heatwaves on a coral reef fishery. Glob. Change Biol. 27, 1214–1225 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jacox, M. G., Alexander, M. A., Bograd, S. J. & Scott, J. D. Thermal displacement by marine heatwaves. Nature 584, 82–86 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Maureaud, A. A. et al. Are we ready to track climate-driven shifts in marine species across international boundaries? A global survey of scientific bottom trawl data. Glob. Change Biol. 27, 220–236 (2021).

    Article 
    ADS 

    Google Scholar 

  • Chase, J. M. et al. Species richness change across spatial scales. Oikos 128, 1079–1091 (2019).

    Article 

    Google Scholar 

  • Husson, B. et al. Successive extreme climatic events lead to immediate, large-scale, and diverse responses from fish in the Arctic. Glob. Change Biol. 28, 3728–3744 (2022).

    Article 
    CAS 

    Google Scholar 

  • Leimu, R. & Koricheva, J. Cumulative meta-analysis: a new tool for detection of temporal trends and publication bias in ecology. Proc. R. Soc. Lond B 271, 1961–1966 (2004).

    Article 

    Google Scholar 

  • Olsen, A., Larson, S., Padilla-Gamiño, J. & Klinger, T. Changes in fish assemblages after marine heatwave events in West Hawai‘i Island. Mar. Ecol. Prog. Ser. 698, 95–109 (2022).

    Article 
    ADS 

    Google Scholar 

  • Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Mar. Policy 57, 53–60 (2015).

    Article 

    Google Scholar 

  • Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).

  • Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) 175–311 (IPCC, WMO, 2018).

  • Meinshausen, M. et al. Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature 604, 304–309 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org/.

  • Sherman, K. The large marine ecosystem concept: research and management strategy for living marine resources. Ecol. Appl. 1, 349–360 (1991).

    Article 
    PubMed 

    Google Scholar 

  • Maureaud, A. A. et al. FishGlob_data: an integrated database of fish biodiversity sampled with scientific bottom-trawl surveys. Preprint at https://doi.org/10.31219/osf.io/2bcjw (2023).

  • World Register of Marine Species (WoRMS Editorial Board, 2022); https://www.marinespecies.org (2022).

  • Barnes, R. & Sahr, K. dggridR: Discrete Global Grids. R package version 3.0.0 https://CRAN.R-project.org/package=dggridR (2023).

  • Ricard, D., Branton, R. M., Clark, D. W. & Hurley, P. Extracting groundfish survey indices from the Ocean Biogeographic Information System (OBIS): an example from Fisheries and Oceans Canada. ICES J. Mar. Sci. 67, 638–645 (2010).

    Article 

    Google Scholar 

  • Day, P. B., Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Species’ thermal ranges predict changes in reef fish community structure during 8 years of extreme temperature variation. Divers. Distrib. 24, 1036–1046 (2018).

    Article 

    Google Scholar 

  • Hutchins, L. W. The bases for temperature zonation in geographical distribution. Ecol. Monogr. 17, 325–335 (1947).

    Article 

    Google Scholar 

  • Black, B. A., Schroeder, I. D., Sydeman, W. J., Bograd, S. J. & Lawson, P. W. Wintertime ocean conditions synchronize rockfish growth and seabird reproduction in the central California Current ecosystem. Can. J. Fish. Aquat. Sci. 67, 1149–1158 (2010).

    Article 

    Google Scholar 

  • Tran, L. L. & Johansen, J. L. Seasonal variability in resilience of a coral reef fish to marine heatwaves and hypoxia. Glob. Change Biol. 29, 2522–2535 (2023).

    Article 
    CAS 

    Google Scholar 

  • Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jean-Michel, L. et al. The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis. Front. Earth Sci. 9, 698876 (2021).

  • Amaya, D. J., Alexander, M. A., Scott, J. D. & Jacox, M. G. An evaluation of high-resolution ocean reanalyses in the California Current system. Prog. Oceanogr. 210, 102951 (2023).

    Article 

    Google Scholar 

  • Amaya, D. J. et al. Bottom marine heatwaves along the continental shelves of North America. Nat. Commun. 14, 1038 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 8, 165–176 (2016).

    Article 
    ADS 

    Google Scholar 

  • Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).

    Article 
    ADS 

    Google Scholar 

  • Jacox, M. G. Marine heatwaves in a changing climate. Nature 571, 485–487 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Vogt, L., Burger, F. A., Griffies, S. M. & Frölicher, T. L. Local drivers of marine heatwaves: a global analysis with an Earth system model. Front. Clim. 4, 847995 (2022).

  • Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B 275, 2743–2748 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Baselga, A. et al. betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R package version 1.5.6 https://CRAN.Rproject.org/package=betapart (2022).

  • Chaikin, S., Dubiner, S. & Belmaker, J. Cold-water species deepen to escape warm water temperatures. Glob. Ecol. Biogeogr. 31, 75–88 (2022).

    Article 

    Google Scholar 

  • Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).

    Article 

    Google Scholar 

  • Hastings, R. A. et al. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 30, 1572–1577 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • English, P. A. et al. Contrasting climate velocity impacts in warm and cool locations show that effects of marine warming are worse in already warmer temperate waters. Fish Fish. 23, 239–255 (2022).

    Article 

    Google Scholar 

  • Beukhof, E. et al. Marine fish traits follow fast-slow continuum across oceans. Sci. Rep. 9, 17878 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Flanagan, P. H., Jensen, O. P., Morley, J. W. & Pinsky, M. L. Response of marine communities to local temperature changes. Ecography 42, 214–224 (2019).

    Article 

    Google Scholar 

  • Babcock, R. C. et al. Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects. Proc. Natl Acad. Sci. USA 107, 18256–18261 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).

    Article 

    Google Scholar 

  • Palomares, M. L. D. et al. Fishery biomass trends of exploited fish populations in marine ecoregions, climatic zones and ocean basins. Estuar. Coast. Shelf Sci. 243, 106896 (2020).

    Article 

    Google Scholar 

  • Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article 

    Google Scholar 

  • Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2006).

  • Fagerland, M. W. t-tests, non-parametric tests, and large studies – a paradox of statistical practice? BMC Med. Res. Methodol. 12, 78 (2012).

    Article 
    PubMed 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *