Smith, K. E. et al. Biological impacts of marine heatwaves. Annu. Rev. Mar. Sci. 15, 119–145 (2023).
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).
Google Scholar
Cheung, W. W. L. et al. Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Sci. Adv. 7, eabh0895 (2021).
Google Scholar
Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).
Google Scholar
Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).
Google Scholar
Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
Google Scholar
Auth, T. D., Daly, E. A., Brodeur, R. D. & Fisher, J. L. Phenological and distributional shifts in ichthyoplankton associated with recent warming in the northeast Pacific Ocean. Glob. Change Biol. 24, 259–272 (2018).
Google Scholar
Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235 (2021).
Google Scholar
Le Grix, N., Zscheischler, J., Rodgers, K. B., Yamaguchi, R. & Frölicher, T. L. Hotspots and drivers of compound marine heatwaves and low net primary production extremes. Biogeosciences 19, 5807–5835 (2022).
Google Scholar
Tittensor, D. P. et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Change 11, 973–981 (2021).
Mills, K. et al. Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the northwest Atlantic. Oceanography 26, 191–195 (2013).
Barbeaux, S. J., Holsman, K. & Zador, S. Marine heatwave stress test of ecosystem-based fisheries management in the Gulf of Alaska Pacific cod fishery. Front. Mar. Sci. 7, 703 (2020).
Google Scholar
Cavole, L. et al. Biological impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).
The State of World Fisheries and Aquaculture 2020 (FAO, 2020); https://doi.org/10.4060/ca9229en.
Oliver, E. C. J. et al. Marine heatwaves. Annu. Rev. Mar. Sci. 13, 313–342 (2021).
Liu, G. et al. Reef-scale thermal stress monitoring of coral ecosystems: new 5-km global products from NOAA Coral Reef Watch. Remote Sens. 6, 11579–11606 (2014).
Google Scholar
Craig, J. K. et al. Ecosystem Status Report for the U.S. South Atlantic Region (National Oceanic and Atmospheric Administration, 2021); https://doi.org/10.25923/qmgr-pr03.
Turcotte, F., Swain, D. P., McDermid, J. L. & DeLong, R. A. Assessment of the NAFO Division 4TVn Southern Gulf of St. Lawrence Atlantic Herring (Clupea harengus) in 2018–2019 (Canadian Science Advisory Secretariat, 2021).
Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
Google Scholar
Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).
Google Scholar
Ives, A. R., Dennis, B., Cottingham, K. L. & Carpenter, S. R. Estimating community stability and ecological interactions from time-series data. Ecol. Monogr. 73, 301–330 (2003).
Google Scholar
Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: global issues and opportunities. Science 374, eabj3593 (2021).
Google Scholar
Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the Equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).
Google Scholar
McLean, M. et al. Disentangling tropicalization and deborealization in marine ecosystems under climate change. Curr. Biol. 31, 4817–4823 (2021).
Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).
Google Scholar
Freedman, R. M., Brown, J. A., Caldow, C. & Caselle, J. E. Marine protected areas do not prevent marine heatwave-induced fish community structure changes in a temperate transition zone. Sci. Rep. 10, 21081 (2020).
Google Scholar
Robinson, J. P. W., Wilson, S. K., Jennings, S. & Graham, N. A. J. Thermal stress induces persistently altered coral reef fish assemblages. Glob. Change Biol. 25, 2739–2750 (2019).
Google Scholar
Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J. & McGill, B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 6, 8405 (2015).
Google Scholar
Baselga, A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 4, 552–557 (2013).
Google Scholar
Alabia, I. D. et al. Marine biodiversity refugia in a climate-sensitive subarctic shelf. Glob. Change Biol. 27, 3299–3311 (2021).
Google Scholar
Catford, J. A., Wilson, J. R. U., Pyšek, P., Hulme, P. E. & Duncan, R. P. Addressing context dependence in ecology. Trends Ecol. Evol. 37, 158–170 (2022).
Google Scholar
Schindler, D. E., Armstrong, J. B. & Reed, T. E. The portfolio concept in ecology and evolution. Front. Ecol. Environ. 13, 257–263 (2015).
Google Scholar
Thorson, J. T., Scheuerell, M. D., Olden, J. D. & Schindler, D. E. Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes. Proc. R. Soc. B 285, 20180915 (2018).
Google Scholar
Chesson, P. L. Multispecies competition in variable environments. Theor. Popul. Biol. 45, 227–276 (1994).
Google Scholar
Kjesbu, O. S. et al. Highly mixed impacts of near-future climate change on stock productivity proxies in the north east Atlantic. Fish Fish. 23, 601–615 (2022).
Google Scholar
Brown, C. J., Mellin, C., Edgar, G. J., Campbell, M. D. & Stuart‐Smith, R. D. Direct and indirect effects of heatwaves on a coral reef fishery. Glob. Change Biol. 27, 1214–1225 (2021).
Google Scholar
Jacox, M. G., Alexander, M. A., Bograd, S. J. & Scott, J. D. Thermal displacement by marine heatwaves. Nature 584, 82–86 (2020).
Google Scholar
Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).
Google Scholar
Maureaud, A. A. et al. Are we ready to track climate-driven shifts in marine species across international boundaries? A global survey of scientific bottom trawl data. Glob. Change Biol. 27, 220–236 (2021).
Google Scholar
Chase, J. M. et al. Species richness change across spatial scales. Oikos 128, 1079–1091 (2019).
Google Scholar
Husson, B. et al. Successive extreme climatic events lead to immediate, large-scale, and diverse responses from fish in the Arctic. Glob. Change Biol. 28, 3728–3744 (2022).
Google Scholar
Leimu, R. & Koricheva, J. Cumulative meta-analysis: a new tool for detection of temporal trends and publication bias in ecology. Proc. R. Soc. Lond B 271, 1961–1966 (2004).
Google Scholar
Olsen, A., Larson, S., Padilla-Gamiño, J. & Klinger, T. Changes in fish assemblages after marine heatwave events in West Hawai‘i Island. Mar. Ecol. Prog. Ser. 698, 95–109 (2022).
Google Scholar
Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).
Google Scholar
Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Mar. Policy 57, 53–60 (2015).
Google Scholar
Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).
Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).
Google Scholar
Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) 175–311 (IPCC, WMO, 2018).
Meinshausen, M. et al. Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature 604, 304–309 (2022).
Google Scholar
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org/.
Sherman, K. The large marine ecosystem concept: research and management strategy for living marine resources. Ecol. Appl. 1, 349–360 (1991).
Google Scholar
Maureaud, A. A. et al. FishGlob_data: an integrated database of fish biodiversity sampled with scientific bottom-trawl surveys. Preprint at https://doi.org/10.31219/osf.io/2bcjw (2023).
World Register of Marine Species (WoRMS Editorial Board, 2022); https://www.marinespecies.org (2022).
Barnes, R. & Sahr, K. dggridR: Discrete Global Grids. R package version 3.0.0 https://CRAN.R-project.org/package=dggridR (2023).
Ricard, D., Branton, R. M., Clark, D. W. & Hurley, P. Extracting groundfish survey indices from the Ocean Biogeographic Information System (OBIS): an example from Fisheries and Oceans Canada. ICES J. Mar. Sci. 67, 638–645 (2010).
Google Scholar
Day, P. B., Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Species’ thermal ranges predict changes in reef fish community structure during 8 years of extreme temperature variation. Divers. Distrib. 24, 1036–1046 (2018).
Google Scholar
Hutchins, L. W. The bases for temperature zonation in geographical distribution. Ecol. Monogr. 17, 325–335 (1947).
Google Scholar
Black, B. A., Schroeder, I. D., Sydeman, W. J., Bograd, S. J. & Lawson, P. W. Wintertime ocean conditions synchronize rockfish growth and seabird reproduction in the central California Current ecosystem. Can. J. Fish. Aquat. Sci. 67, 1149–1158 (2010).
Google Scholar
Tran, L. L. & Johansen, J. L. Seasonal variability in resilience of a coral reef fish to marine heatwaves and hypoxia. Glob. Change Biol. 29, 2522–2535 (2023).
Google Scholar
Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).
Google Scholar
Jean-Michel, L. et al. The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis. Front. Earth Sci. 9, 698876 (2021).
Amaya, D. J., Alexander, M. A., Scott, J. D. & Jacox, M. G. An evaluation of high-resolution ocean reanalyses in the California Current system. Prog. Oceanogr. 210, 102951 (2023).
Google Scholar
Amaya, D. J. et al. Bottom marine heatwaves along the continental shelves of North America. Nat. Commun. 14, 1038 (2023).
Google Scholar
Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 8, 165–176 (2016).
Google Scholar
Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).
Google Scholar
Jacox, M. G. Marine heatwaves in a changing climate. Nature 571, 485–487 (2019).
Google Scholar
Vogt, L., Burger, F. A., Griffies, S. M. & Frölicher, T. L. Local drivers of marine heatwaves: a global analysis with an Earth system model. Front. Clim. 4, 847995 (2022).
Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).
Google Scholar
Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B 275, 2743–2748 (2008).
Google Scholar
Baselga, A. et al. betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R package version 1.5.6 https://CRAN.Rproject.org/package=betapart (2022).
Chaikin, S., Dubiner, S. & Belmaker, J. Cold-water species deepen to escape warm water temperatures. Glob. Ecol. Biogeogr. 31, 75–88 (2022).
Google Scholar
Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).
Google Scholar
Hastings, R. A. et al. Climate change drives poleward increases and equatorward declines in marine species. Curr. Biol. 30, 1572–1577 (2020).
Google Scholar
English, P. A. et al. Contrasting climate velocity impacts in warm and cool locations show that effects of marine warming are worse in already warmer temperate waters. Fish Fish. 23, 239–255 (2022).
Google Scholar
Beukhof, E. et al. Marine fish traits follow fast-slow continuum across oceans. Sci. Rep. 9, 17878 (2019).
Google Scholar
Flanagan, P. H., Jensen, O. P., Morley, J. W. & Pinsky, M. L. Response of marine communities to local temperature changes. Ecography 42, 214–224 (2019).
Google Scholar
Babcock, R. C. et al. Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects. Proc. Natl Acad. Sci. USA 107, 18256–18261 (2010).
Google Scholar
Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).
Google Scholar
Palomares, M. L. D. et al. Fishery biomass trends of exploited fish populations in marine ecoregions, climatic zones and ocean basins. Estuar. Coast. Shelf Sci. 243, 106896 (2020).
Google Scholar
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
Google Scholar
Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2006).
Fagerland, M. W. t-tests, non-parametric tests, and large studies – a paradox of statistical practice? BMC Med. Res. Methodol. 12, 78 (2012).
Google Scholar