Strange India All Strange Things About India and world


  • Talwani, P. On the nature of reservoir-induced seismicity. Pure Appl. Geophys. 150, 473–492 (1997).

    Article 
    ADS 

    Google Scholar 

  • Tostrud, M. B. The Salton Sea, 1906-1996, Computed and Measured Salinities and Water Levels. Draft Report, Colorado River Board of California (1997).

  • Waters, M. R. Late Holocene lacustrine chronology and archaeology of ancient Lake Cahuilla, California. Quat. Res. 19, 373–387 (1983).

    Article 

    Google Scholar 

  • Philibosian, B., Fumal, T. & Weldon, R. San Andreas fault earthquake chronology and Lake Cahuilla history at Coachella, California. Bull. Seismol. Soc. Am. 101, 13–38 (2011).

    Article 

    Google Scholar 

  • Rockwell, T. K., Meltzner, A. J. & Haaker, E. C. Dates of the two most recent surface ruptures on the southernmost San Andreas fault recalculated by precise dating of Lake Cahuilla dry periods. Bull. Seismol. Soc. Am. 108, 2634–2649 (2018).

    Article 

    Google Scholar 

  • Rockwell, T. K., Meltzner, A. J., Haaker, E. C. & Madugo, D. The late Holocene history of Lake Cahuilla: two thousand years of repeated fillings within the Salton Trough, Imperial Valley, California. Quat. Sci. Rev. 282, 107456 (2022).

    Article 

    Google Scholar 

  • King, G. C. P., Stein, R. S. & Lin, J. Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 84, 935–953 (1994).

    Google Scholar 

  • Cocco, M. Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. J. Geophys. Res. Solid Earth 107, 2030 (2002).

    Article 
    ADS 

    Google Scholar 

  • Rice, J. R. & Cleary, M. P. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. 14, 227–241 (1976).

    Article 
    ADS 

    Google Scholar 

  • Wang, H. Theory of Linear Poroelasticity: With Applications to Geomechanics and Hydrogeology (Princeton Univ. Press, 2000).

  • LaBonte, A., Brown, K. & Fialko, Y. Hydrogeologic detection and finite-element modeling of a slow slip event in the Costa Rica prism toe. J. Geophys. Res. Solid Earth 114, B00A02 (2009).

    Article 
    ADS 

    Google Scholar 

  • Segall, P. Earthquake and Volcano Deformation (Princeton Univ. Press, 2010).

  • Barbot, S. & Fialko, Y. A unified continuum representation of post-seismic relaxation mechanisms: semi-analytic models of afterslip, poroelastic rebound and viscoelastic flow. Geophys. J. Int. 182, 1124–1140 (2010).

    Article 
    ADS 

    Google Scholar 

  • Fialko, Y. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature 441, 968–971 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, G., Shearer, P. M. & Hauksson, E. Applying a three-dimensional velocity model, waveform cross correlation, and cluster analysis to locate southern California seismicity from 1981 to 2005. J. Geophys. Res. Solid Earth 112, B12309 (2007).

    Article 
    ADS 

    Google Scholar 

  • Fuis, G. S., Scheirer, D. S., Langenheim, V. E. & Kohler, M. D. A new perspective on the geometry of the San Andreas fault in Southern California and its relationship to lithospheric structure. Bull. Seismol. Soc. Am. 102, 236–251 (2012).

    Article 

    Google Scholar 

  • Lindsey, E. O. et al. Interseismic strain localization in the San Jacinto fault zone. Pure Appl. Geophys. 171, 2937–2954 (2014).

    Article 
    ADS 

    Google Scholar 

  • Fialko, Y. et al. Deformation on nearby faults induced by the 1999 Hector Mine earthquake. Science 297, 1858–1862 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cochran, E. S. et al. Seismic and geodetic evidence for extensive, long-lived fault damage zones. Geology 37, 315–318 (2009).

    Article 
    ADS 

    Google Scholar 

  • Caine, J. S., Evans, J. P. & Forster, C. B. Fault zone architecture and permeability structure. Geology 24, 1025–1028 (1996).

    2.3.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1130%2F0091-7613%281996%29024%3C1025%3AFZAAPS%3E2.3.CO%3B2″ aria-label=”Article reference 20″ data-doi=”10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2″>Article 
    ADS 

    Google Scholar 

  • Bense, V., Gleeson, T., Loveless, S., Bour, O. & Scibek, J. Fault zone hydrogeology. Earth Sci. Rev. 127, 171–192 (2013).

    Article 
    ADS 

    Google Scholar 

  • Nof, R. et al. Rising of the lowest place on Earth due to Dead Sea water-level drop: evidence from SAR interferometry and GPS. J. Geophys. Res. Solid Earth 117, B05412 (2012).

    Article 
    ADS 

    Google Scholar 

  • Gupta, H. K. Reservoir Induced Earthquakes (Elsevier, 1992).

  • Weldon, R. J., Fumal, T. E., Biasi, G. P. & Scharer, K. M. Past and future earthquakes on the San Andreas fault. Science 308, 966–967 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Field, E. H. et al. Uniform California Earthquake Rupture Forecast, version 3 (UCERF3)—the time-independent model. Bull. Seismol. Soc. Am. 104, 1122–1180 (2014).

    Article 

    Google Scholar 

  • Fumal, T. E. Timing of large earthquakes since AD 800 on the Mission Creek strand of the San Andreas fault zone at Thousand Palms Oasis, near Palm Springs, California. Bull. Seismol. Soc. Am. 92, 2841–2860 (2002).

    Article 

    Google Scholar 

  • Gurrola, L. D. & Rockwell, T. K. Timing and slip for prehistoric earthquakes on the Superstition Mountain fault, Imperial Valley, southern California. J. Geophys. Res. Solid Earth 101, 5977–5985 (1996).

    Article 

    Google Scholar 

  • Thomas, A. P. & Rockwell, T. K. A 300- to 550-year history of slip on the Imperial fault near the U.S.-Mexico border: missing slip at the Imperial fault bottleneck. J. Geophys. Res. Solid Earth 101, 5987–5997 (1996).

    Article 

    Google Scholar 

  • Luttrell, K., Sandwell, D., Smith-Konter, B., Bills, B. & Bock, Y. Modulation of the earthquake cycle at the southern San Andreas fault by lake loading. J. Geophys. Res. Solid Earth 112, B08411 (2007).

    Article 
    ADS 

    Google Scholar 

  • Brothers, D., Kilb, D., Luttrell, K., Driscoll, N. & Kent, G. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea. Nat. Geosci. 4, 486–492 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sieh, K. Slip rate across the San Andreas fault and prehistoric earthquakes at Indio, California. Eos Trans. AGU 67, 1200 (1986).

    Google Scholar 

  • Mueller, K. Neotectonics, Alluvial History and Soil Chronology of the Southwestern Margin of the Sierra de Los Cucapas, Baja California Norte. Master’s thesis, San Diego State Univ. (1984).

  • Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article 

    Google Scholar 

  • Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    Article 
    CAS 

    Google Scholar 

  • Roeloffs, E. Fault stability changes induced beneath a reservoir with cyclic variations in water level. J. Geophys. Res. Solid Earth 93, 2107–2124 (1988).

    Article 

    Google Scholar 

  • Segall, P. Earthquakes triggered by fluid extraction. Geology 17, 942–946 (1989).

    2.3.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1130%2F0091-7613%281989%29017%3C0942%3AETBFE%3E2.3.CO%3B2″ aria-label=”Article reference 36″ data-doi=”10.1130/0091-7613(1989)017<0942:ETBFE>2.3.CO;2″>Article 
    ADS 

    Google Scholar 

  • Gupta, H. K. A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India. Earth Sci. Rev. 58, 279–310 (2002).

    Article 
    ADS 

    Google Scholar 

  • Rajendran, K. & Talwani, P. The role of elastic, undrained, and drained responses in triggering earthquakes at Monticello Reservoir, South Carolina. Bull. Seismol. Soc. Am. 82, 1867–1888 (1992).

    Article 

    Google Scholar 

  • Simpson, D., Leith, W. & Scholz, C. Two types of reservoir-induced seismicity. Bull. Seismol. Soc. Am. 78, 2025–2040 (1988).

    Article 

    Google Scholar 

  • Tao, W., Masterlark, T., Shen, Z. & Ronchin, E. Impoundment of the Zipingpu reservoir and triggering of the 2008 Mw 7.9 Wenchuan earthquake, China. J. Geophys. Res. Solid Earth 120, 7033–7047 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mitchell, T. & Faulkner, D. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: a field study from the Atacama fault system, northern Chile. J. Struct. Geol. 31, 802–816 (2009).

    Article 
    ADS 

    Google Scholar 

  • Dor, O., Ben-Zion, Y., Rockwell, T. & Brune, J. Pulverized rocks in the Mojave section of the San Andreas Fault Zone. Earth Planet. Sci. Lett. 245, 642–654 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rockwell, T. et al. Chemical and physical characteristics of pulverized Tejon Lookout granite adjacent to the San Andreas and Garlock faults: implications for earthquake physics. Pure Appl. Geophys. 166, 1725–1746 (2009).

    Article 
    ADS 

    Google Scholar 

  • Morton, N., Girty, G. H. & Rockwell, T. K. Fault zone architecture of the San Jacinto fault zone in Horse Canyon, southern California: a model for focused post-seismic fluid flow and heat transfer in the shallow crust. Earth Planet. Sci. Lett. 329, 71–83 (2012).

    Article 
    ADS 

    Google Scholar 

  • Rempe, M. et al. Damage and seismic velocity structure of pulverized rocks near the San Andreas Fault. J. Geophys. Res. Solid Earth 118, 2813–2831 (2013).

    Article 
    ADS 

    Google Scholar 

  • Morrow, C., Lockner, D., Moore, D. & Hickman, S. Deep permeability of the San Andreas fault from San Andreas fault observatory at depth (SAFOD) core samples. J. Struct. Geol. 64, 99–114 (2014).

    Article 
    ADS 

    Google Scholar 

  • Xue, L., Brodsky, E. E., Erskine, J., Fulton, P. M. & Carter, R. A permeability and compliance contrast measured hydrogeologically on the San Andreas Fault. Geochem. Geophys. Geosyst. 17, 858–871 (2016).

    Article 
    ADS 

    Google Scholar 

  • USGS and California Geological Survey. Quaternary Fault and Fold Database for the United States (accessed 10 July 2019); https://www.usgs.gov/natural-hazards/earthquake-hazards/faults/.

  • Schulte Pelkum, V., Ross, Z. E., Mueller, K. & Ben Zion, Y. Tectonic inheritance with dipping faults and deformation fabric in the brittle and ductile southern California crust. J. Geophys. Res. Solid Earth 125, e2020JB019525 (2020).

    Article 
    ADS 

    Google Scholar 

  • Goebel, T., Weingarten, M., Chen, X., Haffener, J. & Brodsky, E. The 2016 Mw5.1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells. Earth Planet. Sci. Lett. 472, 50–61 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Verdecchia, A., Cochran, E. S. & Harrington, R. M. Fluid-earthquake and earthquake-earthquake interactions in Southern Kansas, USA. J. Geophys. Res. Solid Earth 126, e2020JB020384 (2021).

    Article 
    ADS 

    Google Scholar 

  • Toda, S., Stein, R. S. & Sagiya, T. Evidence from the AD 2000 Izu islands earthquake swarm that stressing rate governs seismicity. Nature 419, 58–61 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Qin, Y., Chen, T., Ma, X. & Chen, X. Forecasting induced seismicity in Oklahoma using machine learning methods. Sci. Rep. 12, 9319 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lindsey, E. & Fialko, Y. Geodetic slip rates in the southern San Andreas Fault system: effects of elastic heterogeneity and fault geometry. J. Geophys. Res. Solid Earth 118, 689–697 (2013).

    Article 
    ADS 

    Google Scholar 

  • Blanton, C. M., Rockwell, T. K., Gontz, A. & Kelly, J. T. Refining the spatial and temporal signatures of creep and co-seismic slip along the southern San Andreas Fault using very high resolution UAS imagery and SfM-derived topography, Coachella Valley, California. Geomorphology 357, 107064 (2020).

    Article 

    Google Scholar 

  • Jin, Z. & Fialko, Y. Finite slip models of the 2019 Ridgecrest earthquake sequence constrained by space geodetic data and aftershock locations. Bull. Seismol. Soc. Am. 110, 1660–1679 (2020).

    Article 

    Google Scholar 

  • Eissa, E. & Kazi, A. Relation between static and dynamic Young’s moduli of rocks. Int. J. Rock Mech. Min. Geomech. Abstr. 25, 479–482 (1988).

    Article 

    Google Scholar 

  • Salditch, L. et al. Earthquake supercycles and long-term fault memory. Tectonophysics 774, 228289 (2020).

    Article 

    Google Scholar 

  • Meltzner, A. J. & Wald, D. J. Aftershocks and triggered events of the great 1906 California earthquake. Bull. Seismol. Soc. Am. 93, 2160–2186 (2003).

    Article 

    Google Scholar 

  • Byerlee, J. Friction of rock. Pure Appl. Geophys. 116, 615–626 (1978).

    Article 
    ADS 

    Google Scholar 

  • Sibson, R. H. An assessment of field evidence for ‘Byerlee’ friction. Pure Appl. Geophys. 142, 645–662 (1994).

    Article 
    ADS 

    Google Scholar 

  • Fialko, Y. & Jin, Z. Simple shear origin of the cross-faults ruptured in the 2019 Ridgecrest earthquake sequence. Nat. Geosci. 14, 513–518 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fialko, Y. Estimation of absolute stress in the hypocentral region of the 2019 Ridgecrest, California, earthquakes. J. Geophys. Res. Solid Earth 126, e2021JB022000 (2021).

    Article 
    ADS 

    Google Scholar 

  • Lockner, D. A., Morrow, C., Moore, D. & Hickman, S. Low strength of deep San Andreas fault gouge from SAFOD core. Nature 472, 82–85 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mitchell, E., Fialko, Y. & Brown, K. M. Temperature dependence of frictional healing of Westerly granite: experimental observations and numerical simulations. Geochem. Geophys. Geosyst. 14, 567–582 (2013).

    Article 
    ADS 

    Google Scholar 

  • Mitchell, E., Fialko, Y. & Brown, K. Frictional properties of gabbro at conditions corresponding to slow slip events in subduction zones. Geochem. Geophys. Geosyst. 16, 4006–4020 (2015).

    Article 
    ADS 

    Google Scholar 

  • Papazafeiropoulos, G., Muñiz-Calvente, M. & Martínez-Pañeda, E. Abaqus2Matlab: a suitable tool for finite element post-processing. Adv. Eng. Softw. 105, 9–16 (2017).

    Article 

    Google Scholar 

  • Durham, W. B. Laboratory observations of the hydraulic behavior of a permeable fracture from 3800 m depth in the KTB pilot hole. J. Geophys. Res. Solid Earth 102, 18405–18416 (1997).

    Article 

    Google Scholar 

  • Miller, S. A. The role of fluids in tectonic and earthquake processes. Adv. Geophys. 54, 1–46 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chang, K. W. & Segall, P. Injection-induced seismicity on basement faults including poroelastic stressing. J. Geophys. Res. Solid Earth 121, 2708–2726 (2016).

    Article 
    ADS 

    Google Scholar 

  • Ge, S. Comment on “Evidence that the 2008 Mw 7.9 Wenchuan earthquake could not have been induced by the Zipingpu Reservoir” by Kai Deng, Shiyong Zhou, Rui Wang, Russell Robinson, Cuiping Zhao, and Wanzheng Cheng. Bull. Seismol. Soc. Am. 101, 3117–3118 (2011).

    Article 

    Google Scholar 

  • Biot, M. A. General theory of three dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Dassault Systèmes. Abaqus 2019 (Dassault Systèmes, 2019, 2020).

  • Tompson, A. et al. Groundwater Availability Within the Salton Sea Basin Final Report (Lawrence Livermore National Laboratory, 2008).

  • Allam, A. A. & Ben-Zion, Y. Seismic velocity structures in the southern California plate-boundary environment from double-difference tomography. Geophys. J. Int. 190, 1181–1196 (2012).

    Article 
    ADS 

    Google Scholar 

  • Shmonov, V., Vitiovtova, V., Zharikov, A. & Grafchikov, A. Permeability of the continental crust: implications of experimental data. J. Geochem. Explor. 78-79, 697–699 (2003).

    Article 
    CAS 

    Google Scholar 

  • Richards-Dinger, K. B. & Shearer, P. M. Estimating crustal thickness in southern California by stacking PmP arrivals. J. Geophys. Res. Solid Earth 102, 15211–15224 (1997).

    Article 

    Google Scholar 

  • Lundgren, P. E., Hetland, A., Liu, Z. & Fielding, E. J. Southern San Andreas-San Jacinto fault system slip rates estimated from earthquake cycle models constrained by GPS and interferometric synthetic aperture radar observations. J. Geophys. Res. Solid Earth 114, B02403 (2009).

    Article 
    ADS 

    Google Scholar 

  • Pearse, J. & Fialko, Y. Mechanics of active magmatic intraplating in the Rio Grande Rift near Socorro, New Mexico. J. Geophys. Res. Solid Earth 115, B07413 (2010).

    Article 
    ADS 

    Google Scholar 

  • Johnson, K. Slip rates and off-fault deformation in Southern California inferred from GPS data and models. J. Geophys. Res. Solid Earth 118, 5643–5664 (2013).

    Article 
    ADS 

    Google Scholar 

  • Hampel, A., Lüke, J., Krause, T. & Hetzel, R. Finite-element modelling of glacial isostatic adjustment (GIA): use of elastic foundations at material boundaries versus the geometrically non-linear formulation. Comput. Geosci. 122, 1–14 (2019).

    Article 
    ADS 

    Google Scholar 

  • Brace, W. F. Permeability of crystalline and argillaceous rocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 17, 241–251 (1980).

    Article 

    Google Scholar 

  • Ross, Z. E., Cochran, E. S., Trugman, D. T. & Smith, J. D. 3D fault architecture controls the dynamism of earthquake swarms. Science 368, 1357–1361 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Jeppson, T. N., Bradbury, K. K. & Evans, J. P. Geophysical properties within the San Andreas Fault Zone at the San Andreas Fault Observatory at Depth and their relationships to rock properties and fault zone structure. J. Geophys. Res. Solid Earth 115, B12423 (2010).

    Article 
    ADS 

    Google Scholar 

  • Farr, T. & Kobrick, M. Shuttle Radar Topography Mission produces a wealth of data. Eos 81, 583–585 (2000).

    Article 
    ADS 

    Google Scholar 

  • Pollitz, F. F. & Sacks, I. S. The 1995 Kobe, Japan, earthquake: a long-delayed aftershock of the offshore 1944 Tonankai and 1946 Nankaido earthquakes. Bull. Seismol. Soc. Am. 87, 1–10 (1997).

    Article 

    Google Scholar 

  • Savage, J. & Burford, R. Geodetic determination of relative plate motion in central California. J. Geophys. Res. 78, 832–845 (1973).

    Article 
    ADS 

    Google Scholar 

  • Lin, G., Shearer, P. M. & Hauksson, E. Applying a three-dimensional velocity model, waveform cross correlation, and cluster analysis to locate southern California seismicity from 1981 to 2005. J. Geophys. Res. Solid Earth 112, B12309 (2007).

    Article 
    ADS 

    Google Scholar 

  • Lindsey, E. O. & Fialko, Y. Geodetic constraints on frictional properties and earthquake hazard in the Imperial Valley, Southern California. J. Geophys. Res. Solid Earth 121, 1097–1113 (2016).

    Article 
    ADS 

    Google Scholar 

  • Takeuchi, C. & Fialko, Y. Dynamic models of interseismic deformation and stress transfer from plate motion to continental transform faults. J. Geophys. Res. Solid Earth 117, B05403 (2012).

    Article 
    ADS 

    Google Scholar 

  • Turcotte, D. L. & Schubert, G. Geodynamics 2nd edn (Cambridge Univ. Press, 2002).



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *