Talwani, P. On the nature of reservoir-induced seismicity. Pure Appl. Geophys. 150, 473–492 (1997).
Google Scholar
Tostrud, M. B. The Salton Sea, 1906-1996, Computed and Measured Salinities and Water Levels. Draft Report, Colorado River Board of California (1997).
Waters, M. R. Late Holocene lacustrine chronology and archaeology of ancient Lake Cahuilla, California. Quat. Res. 19, 373–387 (1983).
Google Scholar
Philibosian, B., Fumal, T. & Weldon, R. San Andreas fault earthquake chronology and Lake Cahuilla history at Coachella, California. Bull. Seismol. Soc. Am. 101, 13–38 (2011).
Google Scholar
Rockwell, T. K., Meltzner, A. J. & Haaker, E. C. Dates of the two most recent surface ruptures on the southernmost San Andreas fault recalculated by precise dating of Lake Cahuilla dry periods. Bull. Seismol. Soc. Am. 108, 2634–2649 (2018).
Google Scholar
Rockwell, T. K., Meltzner, A. J., Haaker, E. C. & Madugo, D. The late Holocene history of Lake Cahuilla: two thousand years of repeated fillings within the Salton Trough, Imperial Valley, California. Quat. Sci. Rev. 282, 107456 (2022).
Google Scholar
King, G. C. P., Stein, R. S. & Lin, J. Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 84, 935–953 (1994).
Cocco, M. Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. J. Geophys. Res. Solid Earth 107, 2030 (2002).
Google Scholar
Rice, J. R. & Cleary, M. P. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. 14, 227–241 (1976).
Google Scholar
Wang, H. Theory of Linear Poroelasticity: With Applications to Geomechanics and Hydrogeology (Princeton Univ. Press, 2000).
LaBonte, A., Brown, K. & Fialko, Y. Hydrogeologic detection and finite-element modeling of a slow slip event in the Costa Rica prism toe. J. Geophys. Res. Solid Earth 114, B00A02 (2009).
Google Scholar
Segall, P. Earthquake and Volcano Deformation (Princeton Univ. Press, 2010).
Barbot, S. & Fialko, Y. A unified continuum representation of post-seismic relaxation mechanisms: semi-analytic models of afterslip, poroelastic rebound and viscoelastic flow. Geophys. J. Int. 182, 1124–1140 (2010).
Google Scholar
Fialko, Y. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature 441, 968–971 (2006).
Google Scholar
Lin, G., Shearer, P. M. & Hauksson, E. Applying a three-dimensional velocity model, waveform cross correlation, and cluster analysis to locate southern California seismicity from 1981 to 2005. J. Geophys. Res. Solid Earth 112, B12309 (2007).
Google Scholar
Fuis, G. S., Scheirer, D. S., Langenheim, V. E. & Kohler, M. D. A new perspective on the geometry of the San Andreas fault in Southern California and its relationship to lithospheric structure. Bull. Seismol. Soc. Am. 102, 236–251 (2012).
Google Scholar
Lindsey, E. O. et al. Interseismic strain localization in the San Jacinto fault zone. Pure Appl. Geophys. 171, 2937–2954 (2014).
Google Scholar
Fialko, Y. et al. Deformation on nearby faults induced by the 1999 Hector Mine earthquake. Science 297, 1858–1862 (2002).
Google Scholar
Cochran, E. S. et al. Seismic and geodetic evidence for extensive, long-lived fault damage zones. Geology 37, 315–318 (2009).
Google Scholar
Caine, J. S., Evans, J. P. & Forster, C. B. Fault zone architecture and permeability structure. Geology 24, 1025–1028 (1996).
Google Scholar
Bense, V., Gleeson, T., Loveless, S., Bour, O. & Scibek, J. Fault zone hydrogeology. Earth Sci. Rev. 127, 171–192 (2013).
Google Scholar
Nof, R. et al. Rising of the lowest place on Earth due to Dead Sea water-level drop: evidence from SAR interferometry and GPS. J. Geophys. Res. Solid Earth 117, B05412 (2012).
Google Scholar
Gupta, H. K. Reservoir Induced Earthquakes (Elsevier, 1992).
Weldon, R. J., Fumal, T. E., Biasi, G. P. & Scharer, K. M. Past and future earthquakes on the San Andreas fault. Science 308, 966–967 (2005).
Google Scholar
Field, E. H. et al. Uniform California Earthquake Rupture Forecast, version 3 (UCERF3)—the time-independent model. Bull. Seismol. Soc. Am. 104, 1122–1180 (2014).
Google Scholar
Fumal, T. E. Timing of large earthquakes since AD 800 on the Mission Creek strand of the San Andreas fault zone at Thousand Palms Oasis, near Palm Springs, California. Bull. Seismol. Soc. Am. 92, 2841–2860 (2002).
Google Scholar
Gurrola, L. D. & Rockwell, T. K. Timing and slip for prehistoric earthquakes on the Superstition Mountain fault, Imperial Valley, southern California. J. Geophys. Res. Solid Earth 101, 5977–5985 (1996).
Google Scholar
Thomas, A. P. & Rockwell, T. K. A 300- to 550-year history of slip on the Imperial fault near the U.S.-Mexico border: missing slip at the Imperial fault bottleneck. J. Geophys. Res. Solid Earth 101, 5987–5997 (1996).
Google Scholar
Luttrell, K., Sandwell, D., Smith-Konter, B., Bills, B. & Bock, Y. Modulation of the earthquake cycle at the southern San Andreas fault by lake loading. J. Geophys. Res. Solid Earth 112, B08411 (2007).
Google Scholar
Brothers, D., Kilb, D., Luttrell, K., Driscoll, N. & Kent, G. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea. Nat. Geosci. 4, 486–492 (2011).
Google Scholar
Sieh, K. Slip rate across the San Andreas fault and prehistoric earthquakes at Indio, California. Eos Trans. AGU 67, 1200 (1986).
Mueller, K. Neotectonics, Alluvial History and Soil Chronology of the Southwestern Margin of the Sierra de Los Cucapas, Baja California Norte. Master’s thesis, San Diego State Univ. (1984).
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).
Google Scholar
Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).
Google Scholar
Roeloffs, E. Fault stability changes induced beneath a reservoir with cyclic variations in water level. J. Geophys. Res. Solid Earth 93, 2107–2124 (1988).
Google Scholar
Segall, P. Earthquakes triggered by fluid extraction. Geology 17, 942–946 (1989).
Google Scholar
Gupta, H. K. A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India. Earth Sci. Rev. 58, 279–310 (2002).
Google Scholar
Rajendran, K. & Talwani, P. The role of elastic, undrained, and drained responses in triggering earthquakes at Monticello Reservoir, South Carolina. Bull. Seismol. Soc. Am. 82, 1867–1888 (1992).
Google Scholar
Simpson, D., Leith, W. & Scholz, C. Two types of reservoir-induced seismicity. Bull. Seismol. Soc. Am. 78, 2025–2040 (1988).
Google Scholar
Tao, W., Masterlark, T., Shen, Z. & Ronchin, E. Impoundment of the Zipingpu reservoir and triggering of the 2008 Mw 7.9 Wenchuan earthquake, China. J. Geophys. Res. Solid Earth 120, 7033–7047 (2015).
Google Scholar
Mitchell, T. & Faulkner, D. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements: a field study from the Atacama fault system, northern Chile. J. Struct. Geol. 31, 802–816 (2009).
Google Scholar
Dor, O., Ben-Zion, Y., Rockwell, T. & Brune, J. Pulverized rocks in the Mojave section of the San Andreas Fault Zone. Earth Planet. Sci. Lett. 245, 642–654 (2006).
Google Scholar
Rockwell, T. et al. Chemical and physical characteristics of pulverized Tejon Lookout granite adjacent to the San Andreas and Garlock faults: implications for earthquake physics. Pure Appl. Geophys. 166, 1725–1746 (2009).
Google Scholar
Morton, N., Girty, G. H. & Rockwell, T. K. Fault zone architecture of the San Jacinto fault zone in Horse Canyon, southern California: a model for focused post-seismic fluid flow and heat transfer in the shallow crust. Earth Planet. Sci. Lett. 329, 71–83 (2012).
Google Scholar
Rempe, M. et al. Damage and seismic velocity structure of pulverized rocks near the San Andreas Fault. J. Geophys. Res. Solid Earth 118, 2813–2831 (2013).
Google Scholar
Morrow, C., Lockner, D., Moore, D. & Hickman, S. Deep permeability of the San Andreas fault from San Andreas fault observatory at depth (SAFOD) core samples. J. Struct. Geol. 64, 99–114 (2014).
Google Scholar
Xue, L., Brodsky, E. E., Erskine, J., Fulton, P. M. & Carter, R. A permeability and compliance contrast measured hydrogeologically on the San Andreas Fault. Geochem. Geophys. Geosyst. 17, 858–871 (2016).
Google Scholar
USGS and California Geological Survey. Quaternary Fault and Fold Database for the United States (accessed 10 July 2019); https://www.usgs.gov/natural-hazards/earthquake-hazards/faults/.
Schulte Pelkum, V., Ross, Z. E., Mueller, K. & Ben Zion, Y. Tectonic inheritance with dipping faults and deformation fabric in the brittle and ductile southern California crust. J. Geophys. Res. Solid Earth 125, e2020JB019525 (2020).
Google Scholar
Goebel, T., Weingarten, M., Chen, X., Haffener, J. & Brodsky, E. The 2016 Mw5.1 Fairview, Oklahoma earthquakes: Evidence for long-range poroelastic triggering at >40 km from fluid disposal wells. Earth Planet. Sci. Lett. 472, 50–61 (2017).
Google Scholar
Verdecchia, A., Cochran, E. S. & Harrington, R. M. Fluid-earthquake and earthquake-earthquake interactions in Southern Kansas, USA. J. Geophys. Res. Solid Earth 126, e2020JB020384 (2021).
Google Scholar
Toda, S., Stein, R. S. & Sagiya, T. Evidence from the AD 2000 Izu islands earthquake swarm that stressing rate governs seismicity. Nature 419, 58–61 (2002).
Google Scholar
Qin, Y., Chen, T., Ma, X. & Chen, X. Forecasting induced seismicity in Oklahoma using machine learning methods. Sci. Rep. 12, 9319 (2022).
Google Scholar
Lindsey, E. & Fialko, Y. Geodetic slip rates in the southern San Andreas Fault system: effects of elastic heterogeneity and fault geometry. J. Geophys. Res. Solid Earth 118, 689–697 (2013).
Google Scholar
Blanton, C. M., Rockwell, T. K., Gontz, A. & Kelly, J. T. Refining the spatial and temporal signatures of creep and co-seismic slip along the southern San Andreas Fault using very high resolution UAS imagery and SfM-derived topography, Coachella Valley, California. Geomorphology 357, 107064 (2020).
Google Scholar
Jin, Z. & Fialko, Y. Finite slip models of the 2019 Ridgecrest earthquake sequence constrained by space geodetic data and aftershock locations. Bull. Seismol. Soc. Am. 110, 1660–1679 (2020).
Google Scholar
Eissa, E. & Kazi, A. Relation between static and dynamic Young’s moduli of rocks. Int. J. Rock Mech. Min. Geomech. Abstr. 25, 479–482 (1988).
Google Scholar
Salditch, L. et al. Earthquake supercycles and long-term fault memory. Tectonophysics 774, 228289 (2020).
Google Scholar
Meltzner, A. J. & Wald, D. J. Aftershocks and triggered events of the great 1906 California earthquake. Bull. Seismol. Soc. Am. 93, 2160–2186 (2003).
Google Scholar
Byerlee, J. Friction of rock. Pure Appl. Geophys. 116, 615–626 (1978).
Google Scholar
Sibson, R. H. An assessment of field evidence for ‘Byerlee’ friction. Pure Appl. Geophys. 142, 645–662 (1994).
Google Scholar
Fialko, Y. & Jin, Z. Simple shear origin of the cross-faults ruptured in the 2019 Ridgecrest earthquake sequence. Nat. Geosci. 14, 513–518 (2021).
Google Scholar
Fialko, Y. Estimation of absolute stress in the hypocentral region of the 2019 Ridgecrest, California, earthquakes. J. Geophys. Res. Solid Earth 126, e2021JB022000 (2021).
Google Scholar
Lockner, D. A., Morrow, C., Moore, D. & Hickman, S. Low strength of deep San Andreas fault gouge from SAFOD core. Nature 472, 82–85 (2011).
Google Scholar
Mitchell, E., Fialko, Y. & Brown, K. M. Temperature dependence of frictional healing of Westerly granite: experimental observations and numerical simulations. Geochem. Geophys. Geosyst. 14, 567–582 (2013).
Google Scholar
Mitchell, E., Fialko, Y. & Brown, K. Frictional properties of gabbro at conditions corresponding to slow slip events in subduction zones. Geochem. Geophys. Geosyst. 16, 4006–4020 (2015).
Google Scholar
Papazafeiropoulos, G., Muñiz-Calvente, M. & Martínez-Pañeda, E. Abaqus2Matlab: a suitable tool for finite element post-processing. Adv. Eng. Softw. 105, 9–16 (2017).
Google Scholar
Durham, W. B. Laboratory observations of the hydraulic behavior of a permeable fracture from 3800 m depth in the KTB pilot hole. J. Geophys. Res. Solid Earth 102, 18405–18416 (1997).
Google Scholar
Miller, S. A. The role of fluids in tectonic and earthquake processes. Adv. Geophys. 54, 1–46 (2013).
Google Scholar
Chang, K. W. & Segall, P. Injection-induced seismicity on basement faults including poroelastic stressing. J. Geophys. Res. Solid Earth 121, 2708–2726 (2016).
Google Scholar
Ge, S. Comment on “Evidence that the 2008 Mw 7.9 Wenchuan earthquake could not have been induced by the Zipingpu Reservoir” by Kai Deng, Shiyong Zhou, Rui Wang, Russell Robinson, Cuiping Zhao, and Wanzheng Cheng. Bull. Seismol. Soc. Am. 101, 3117–3118 (2011).
Google Scholar
Biot, M. A. General theory of three dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941).
Google Scholar
Dassault Systèmes. Abaqus 2019 (Dassault Systèmes, 2019, 2020).
Tompson, A. et al. Groundwater Availability Within the Salton Sea Basin Final Report (Lawrence Livermore National Laboratory, 2008).
Allam, A. A. & Ben-Zion, Y. Seismic velocity structures in the southern California plate-boundary environment from double-difference tomography. Geophys. J. Int. 190, 1181–1196 (2012).
Google Scholar
Shmonov, V., Vitiovtova, V., Zharikov, A. & Grafchikov, A. Permeability of the continental crust: implications of experimental data. J. Geochem. Explor. 78-79, 697–699 (2003).
Google Scholar
Richards-Dinger, K. B. & Shearer, P. M. Estimating crustal thickness in southern California by stacking PmP arrivals. J. Geophys. Res. Solid Earth 102, 15211–15224 (1997).
Google Scholar
Lundgren, P. E., Hetland, A., Liu, Z. & Fielding, E. J. Southern San Andreas-San Jacinto fault system slip rates estimated from earthquake cycle models constrained by GPS and interferometric synthetic aperture radar observations. J. Geophys. Res. Solid Earth 114, B02403 (2009).
Google Scholar
Pearse, J. & Fialko, Y. Mechanics of active magmatic intraplating in the Rio Grande Rift near Socorro, New Mexico. J. Geophys. Res. Solid Earth 115, B07413 (2010).
Google Scholar
Johnson, K. Slip rates and off-fault deformation in Southern California inferred from GPS data and models. J. Geophys. Res. Solid Earth 118, 5643–5664 (2013).
Google Scholar
Hampel, A., Lüke, J., Krause, T. & Hetzel, R. Finite-element modelling of glacial isostatic adjustment (GIA): use of elastic foundations at material boundaries versus the geometrically non-linear formulation. Comput. Geosci. 122, 1–14 (2019).
Google Scholar
Brace, W. F. Permeability of crystalline and argillaceous rocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 17, 241–251 (1980).
Google Scholar
Ross, Z. E., Cochran, E. S., Trugman, D. T. & Smith, J. D. 3D fault architecture controls the dynamism of earthquake swarms. Science 368, 1357–1361 (2020).
Google Scholar
Jeppson, T. N., Bradbury, K. K. & Evans, J. P. Geophysical properties within the San Andreas Fault Zone at the San Andreas Fault Observatory at Depth and their relationships to rock properties and fault zone structure. J. Geophys. Res. Solid Earth 115, B12423 (2010).
Google Scholar
Farr, T. & Kobrick, M. Shuttle Radar Topography Mission produces a wealth of data. Eos 81, 583–585 (2000).
Google Scholar
Pollitz, F. F. & Sacks, I. S. The 1995 Kobe, Japan, earthquake: a long-delayed aftershock of the offshore 1944 Tonankai and 1946 Nankaido earthquakes. Bull. Seismol. Soc. Am. 87, 1–10 (1997).
Google Scholar
Savage, J. & Burford, R. Geodetic determination of relative plate motion in central California. J. Geophys. Res. 78, 832–845 (1973).
Google Scholar
Lin, G., Shearer, P. M. & Hauksson, E. Applying a three-dimensional velocity model, waveform cross correlation, and cluster analysis to locate southern California seismicity from 1981 to 2005. J. Geophys. Res. Solid Earth 112, B12309 (2007).
Google Scholar
Lindsey, E. O. & Fialko, Y. Geodetic constraints on frictional properties and earthquake hazard in the Imperial Valley, Southern California. J. Geophys. Res. Solid Earth 121, 1097–1113 (2016).
Google Scholar
Takeuchi, C. & Fialko, Y. Dynamic models of interseismic deformation and stress transfer from plate motion to continental transform faults. J. Geophys. Res. Solid Earth 117, B05403 (2012).
Google Scholar
Turcotte, D. L. & Schubert, G. Geodynamics 2nd edn (Cambridge Univ. Press, 2002).