Strange IndiaStrange India


  • 1.

    Begley, M. R., Gianola, D. S. & Ray, T. R. Bridging functional nanocomposites to robust macroscale devices. Science 364, eaav4299 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 2.

    Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Grzelczak, M., Liz-Marzán, L. M. & Klajn, R. Stimuli-responsive self-assembly of nanoparticles. Chem. Soc. Rev. 48, 1342–1361 (2019).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Gabrys, P. A., Zornberg, L. Z. & Macfarlane, R. J. Programmable atom equivalents: atomic crystallization as a framework for synthesizing nanoparticle superlattices. Small 15, 1805424 (2019).

    Article 

    Google Scholar 

  • 5.

    Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Dreyer, A. et al. Organically linked iron oxide nanoparticle supercrystals with exceptional isotropic mechanical properties. Nat. Mater. 15, 522–528 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Tan, A. T. L., Beroz, J., Kolle, M. & Hart, A. J. Direct-Write Freeform Colloidal Assembly. Adv. Mater. 30, 1803620 (2018).

    Article 

    Google Scholar 

  • 8.

    Hatton, B., Mishchenko, L., Davis, S., Sandhage, K. H. & Aizenberg, J. Assembly of large-area, highly ordered, crack-free inverse opal films. Proc. Natl Acad. Sci. USA 107, 10354–10359 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Singh, G. et al. Self-assembly of magnetite nanocubes into helical superstructures. Science 345, 1149–1153 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Vial, S., Nykypanchuk, D., Yager, K. G., Tkachenko, A. V. & Gang, O. Linear mesostructures in DNA–nanorod self-assembly. ACS Nano 7, 5437–5445 (2013).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Gabrys, P. A. & Macfarlane, R. J. Controlling crystal texture in programmable atom equivalent thin films. ACS Nano 13, 8452–8460 (2019).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 466, 474–477 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Ye, X. et al. Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals. Nat. Commun. 6, 10052 (2015).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Auyeung, E. et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 505, 73–77 (2014).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Kang, Y. et al. Heterogeneous catalysts need not be so “heterogeneous”: monodisperse Pt nanocrystals by combining shape-controlled synthesis and purification by colloidal recrystallization. J. Am. Chem. Soc. 135, 2741–2747 (2013).

    CAS 
    Article 

    Google Scholar 

  • 17.

    de Nijs, B. et al. Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement. Nat. Mater. 14, 56–60 (2015).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Lewis, D. J., Zornberg, L. Z., Carter, D. J. D. & Macfarlane, R. J. Single-crystal Winterbottom constructions of nanoparticle superlattices. Nat. Mater. 19, 719–724 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Nagaoka, Y. et al. Superstructures generated from truncated tetrahedral quantum dots. Nature 561, 378–382 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Jiang, W. et al. Emergence of complexity in hierarchically organized chiral particles. Science 368, 642–648 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Hueckel, T., Hocky, G. M., Palacci, J. & Sacanna, S. Ionic solids from common colloids. Nature 580, 487–490 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Zhang, J. et al. Self-assembling nanocomposite tectons. J. Am. Chem. Soc. 138, 16228–16231 (2016).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Santos, P. J., Cheung, T. C. & Macfarlane, R. J. assembling ordered crystals with disperse building blocks. Nano Lett. 19, 5774–5780 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Auyeung, E., Macfarlane, R. J., Choi, C. H. J., Cutler, J. I. & Mirkin, C. A. Transitioning DNA-engineered nanoparticle superlattices from solution to the solid state. Adv. Mater. 24, 5181–5186 (2012).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Lee, S., Zheng, C. Y., Bujold, K. E. & Mirkin, C. A. A cross-linking approach to stabilizing stimuli-responsive colloidal crystals engineered with DNA. J. Am. Chem. Soc. 141, 11827–11831 (2019).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Birshtein, T. M. & Lyatskaya, Yu. V. Theory of the collapse-stretching transition of a polymer brush in a mixed solvent. Macromolecules 27, 1256–1266 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 27.

    Santos, P. J., Cao, Z., Zhang, J., Alexander-Katz, A. & Macfarlane, R. J. Dictating nanoparticle assembly via systems-level control of molecular multivalency. J. Am. Chem. Soc. 141, 14624–14632 (2019).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Chaim, R., Levin, M., Shlayer, A. & Estournes, C. Sintering and densification of nanocrystalline ceramic oxide powders: a review. Adv. Appl. Ceramics 107, 159–169 (2008).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Olevsky, E. A. Theory of sintering: from discrete to continuum. Mater. Sci. Eng. Rep. 23, 41–100 (1998).

    Article 

    Google Scholar 

  • 30.

    Schall, P., Cohen, I., Weitz, D. A. & Spaepen, F. Visualizing dislocation nucleation by indenting colloidal crystals. Nature 440, 319–323 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Santos, P. J. & Macfarlane, R. J. Reinforcing supramolecular bonding with magnetic dipole interactions to assemble dynamic nanoparticle superlattices. J. Am. Chem. Soc. 142, 1170–1174 (2020).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Matyjaszewski, K. Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45, 4015–4039 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 33.

    Bastús, N. G., Comenge, J. & Puntes, V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27, 11098–11105 (2011).

    Article 

    Google Scholar 

  • 34.

    Park, J. et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Huh, J.-H., Lee, J. & Lee, S. Soft plasmonic assemblies exhibiting unnaturally high refractive index. Nano Lett. 20, 4768–4774 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Majetich, S. A., Wen, T. & Booth, R. A. Functional magnetic nanoparticle assemblies: formation, collective behavior, and future directions. ACS Nano 5, 6081–6084 (2011).

    CAS 
    Article 

    Google Scholar 

  • 37.

    De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    Article 

    Google Scholar 

  • 38.

    Mirabello, G. et al. Crystallization by particle attachment is a colloidal assembly process. Nat. Mater. 19, 391–396 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Ou, Z., Wang, Z., Luo, B., Luijten, E. & Chen, Q. Kinetic pathways of crystallization at the nanoscale. Nat. Mater. 19, 450–455 (2019).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Depriester, D. & Kubler, R. Resolution of the Wicksell’s equation by minimum distance estimation. Image Anal. Stereol. 38, 213–226 (2019).

    MathSciNet 
    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *