Merzenich, M. M., Michelson, R. P., Pettit, C. R., Schindler, R. A. & Reid, M. Neural encoding of sound sensation evoked by electrical stimulation of the acoustic nerve. Ann. Otol. Rhinol. Laryngol. 82, 486–503 (1973).
Google Scholar
Chang, S. A. et al. Performance overtime on adults with simultaneous bilateral cochlear implants. J. Am. Acad. Audiol. 21, 35–43 (2010).
Google Scholar
Tang, L. et al. Rehabilitation and psychosocial determinants of cochlear implant outcomes in older adults. Ear Hear. 38, 663–671 (2017).
Google Scholar
Nourski, K. V. et al. Direct recordings from the auditory cortex in a cochlear implant user. J. Assoc. Res. Otolaryngol. 14, 435–450 (2013).
Google Scholar
Fallon, J. B., Irvine, D. R. & Shepherd, R. K. Neural prostheses and brain plasticity. J. Neural Eng. 6, 065008 (2009).
Google Scholar
Reiss, L. A., Turner, C. W., Karsten, S. A. & Gantz, B. J. Plasticity in human pitch perception induced by tonotopically mismatched electro-acoustic stimulation. Neuroscience 256, 43–52 (2014).
Google Scholar
Svirsky, M. A., Silveira, A., Neuburger, H., Teoh, S. W. & Suarez, H. Long-term auditory adaptation to a modified peripheral frequency map. Acta. Otolaryngol. 124, 381–386 (2004).
Google Scholar
Johnson, L. A., Della Santina, C. C. & Wang, X. Selective neuronal activation by cochlear implant stimulation in auditory cortex of awake primate. J. Neurosci. 36, 12468–12484 (2016).
Google Scholar
Johnson, L. A., Della Santina, C. C. & Wang, X. Representations of time-varying cochlear implant stimulation in auditory cortex of awake marmosets (Callithrix jacchus). J. Neurosci. 37, 7008–7022 (2017).
Google Scholar
Klinke, R., Kral, A., Heid, S., Tillein, J. & Hartmann, R. Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation. Science 285, 1729–1733 (1999).
Google Scholar
Fallon, J. B., Shepherd, R. K. & Irvine, D. R. Effects of chronic cochlear electrical stimulation after an extended period of profound deafness on primary auditory cortex organization in cats. Eur. J. Neurosci. 39, 811–820 (2014).
Google Scholar
Isaiah, A., Vongpaisal, T., King, A. J. & Hartley, D. E. Multisensory training improves auditory spatial processing following bilateral cochlear implantation. J. Neurosci. 34, 11119–11130 (2014).
Google Scholar
Blamey, P. et al. Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants: an update with 2251 patients. Audiol. Neurootol. 18, 36–47 (2013).
Google Scholar
Moore, D. R. & Shannon, R. V. Beyond cochlear implants: awakening the deafened brain. Nat. Neurosci. 12, 686–691 (2009).
Google Scholar
Glennon, E., Svirsky, M. A. & Froemke, R. C. Auditory cortical plasticity in cochlear implant users. Curr. Opin. Neurobiol. 60, 108–114 (2020).
Google Scholar
Lu, W., Xu, J. & Shepherd, R. K. Cochlear implantation in rats: a new surgical approach. Hear. Res. 205, 115–122 (2005).
Google Scholar
Hancock, K. E., Noel, V., Ryugo, D. K. & Delgutte, B. Neural coding of interaural time differences with bilateral cochlear implants: effects of congenital deafness. J. Neurosci. 30, 14068–14079 (2010).
Google Scholar
Rosskothen-Kuhl, N. & Illing, R. B. Nonlinear development of the populations of neurons expressing c-Fos under sustained electrical intracochlear stimulation in the rat auditory brainstem. Brain Res. 1347, 33–41 (2010).
Google Scholar
Tillein, J. et al. Cortical representation of interaural time difference in congenital deafness. Cereb. Cortex 20, 492–506 (2010).
Google Scholar
Hancock, K. E., Chung, Y. & Delgutte, B. Congenital and prolonged adult-onset deafness cause distinct degradations in neural ITD coding with bilateral cochlear implants. J. Assoc. Res. Otolaryngol. 14, 393–411 (2013).
Google Scholar
Chung, Y., Hancock, K. E. & Delgutte, B. Neural coding of interaural time differences with bilateral cochlear implants in unanesthetized rabbits. J. Neurosci. 36, 5520–5531 (2016).
Google Scholar
King, J., Shehu, I., Roland, J. T. Jr, Svirsky, M. A. & Froemke, R. C. A physiological and behavioral system for hearing restoration with cochlear implants. J. Neurophysiol. 116, 844–858 (2016).
Google Scholar
Tillein, J., Hubka, P. & Kral, A. Monaural congenital deafness affects aural dominance and degrades binaural processing. Cereb. Cortex 26, 1762–1777 (2016).
Google Scholar
Chung, Y., Buechel, B. D., Sunwoo, W., Wagner, J. D. & Delgutte, B. Neural ITD sensitivity and temporal coding with cochlear implants in an animal model of early-onset deafness. J. Assoc. Res. Otolaryngol. 20, 37–56 (2019).
Google Scholar
Rosskothen-Kuhl, N., Buck, A. N., Li, K. & Schnupp, J. W. Microsecond interaural time difference discrimination restored by cochlear implants after neonatal deafness. eLife 10, e59300 (2021).
Google Scholar
Martins, A. R. & Froemke, R. C. Coordinated forms of noradrenergic plasticity in the locus coeruleus and primary auditory cortex. Nat. Neurosci. 18, 1483–1492 (2015).
Google Scholar
Glennon, E. et al. Locus coeruleus activation accelerates perceptual learning. Brain Res. 1709, 39–49 (2019).
Google Scholar
Holden, L. K. et al. Factors affecting open-set word recognition in adults with cochlear implants. Ear Hear. 34, 342–360 (2013).
Google Scholar
Edeline, J. M., Manunta, Y. & Hennevin, E. Induction of selective plasticity in the frequency tuning of auditory cortex and auditory thalamus neurons by locus coeruleus stimulation. Hear. Res. 274, 75–84 (2011).
Google Scholar
Devilbiss, D. M., Page, M. E. & Waterhouse, B. D. Locus ceruleus regulates sensory encoding by neurons and networks in waking animals. J. Neurosci. 26, 9860–9872 (2006).
Google Scholar
Sara, S. J. The locus coeruleus and noradrenergic modulation of cognition. Nat. Rev. Neurosci. 10, 211–223 (2009).
Google Scholar
Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).
Google Scholar
Sugiyama, D. et al. In vivo patch-clamp recording from locus coeruleus neurones in the rat brainstem. J. Physiol. 590, 2225–2231 (2012).
Google Scholar
Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).
Google Scholar
Watabe-Uchida, M., Eshel, N. & Uchida, N. Neural circuitry of reward prediction error. Annu. Rev. Neurosci. 40, 373–394 (2017).
Google Scholar
Kral, A. & Tillein, J. Brain plasticity under cochlear implant stimulation. Adv. Otorhinolaryngol. 64, 89–108 (2006).
Giraud, A. L., Truy, E. & Frackowiak, R. Imaging plasticity in cochlear implant patients. Audiol. Neurootol. 6, 381–393 (2001).
Google Scholar
Irvine, D. R., Fallon, J. B. & Kamke, M. R. Plasticity in the adult central auditory system. Acoust. Aust. 34, 13–17 (2006).
Carcea, I., Insanally, M. N. & Froemke, R. C. Dynamics of auditory cortical activity during behavioural engagement and auditory perception. Nat. Commun. 8, 14412 (2017).
Google Scholar
Bledsoe, S. C., Nagase, S., Miller, J. M. & Altschuler, R. A. Deafness-induced plasticity in the mature central auditory system. Neuroreport 7, 225–229 (1995).
Google Scholar
Abbott, S. D., Hughes, L. F., Bauer, C. A., Salvi, R. & Caspary, D. M. Detection of glutamate decarboxylase isoforms in rat inferior colliculus following acoustic exposure. Neuroscience 93, 1375–1381 (1999).
Google Scholar
Vale, C. & Sanes, D. H. The effect of bilateral deafness on excitatory and inhibitory synaptic strength in the inferior colliculus. Eur. J. Neurosci. 16, 2394–2404 (2002).
Google Scholar
Argence, M., Vassias, I., Kerhuel, L., Vidal, P.-P. & de Waele, C. Stimulation by cochlear implant in unilaterally deaf rats reverses the decrease of inhibitory transmission in the inferior colliculus. Eur. J. Neurosci. 28, 1589–1602 (2008).
Google Scholar
Scholl, B. & Wehr, M. Disruption of balanced cortical excitation and inhibition by acoustic trauma. J. Neurophysiol. 100, 646–656 (2008).
Google Scholar
Rosskothen-Kuhl, N., Hildebrandt, H., Birkenhäger, R. & Illing, R. B. Astrocyte hypertrophy and microglia activation in the rat auditory midbrain is induced by electrical intracochlear stimulation. Front. Cell. Neurosci. 12, 43 (2018).
Google Scholar
Dorrn, A. L., Yuan, K., Barker, A. J., Schreiner, C. E. & Froemke, R. C. Developmental sensory experience balances cortical excitation and inhibition. Nature 465, 932–936 (2010).
Google Scholar
Froemke, R. C. et al. Long-term modification of cortical synapses improves sensory perception. Nat. Neurosci. 16, 79–88 (2013).
Google Scholar
Witten, I. B. et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72, 721–733 (2011).
Google Scholar
Carter, M. E. et al. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 13, 1526–1533 (2010).
Google Scholar
Muller, M. Frequency representation in the rat cochlea. Hear. Res. 51, 247–254 (1991).
Google Scholar
Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates 7th edn (Academic Press, 2013).
Feldkamp, L. A., Davis, L. C. & Kress, J. W. Practical cone-beam algorithm. J. Opt. Soc. Am. A 1, 612–619 (1984).
Google Scholar
Barrett, J. F. & Keat, N. Artifacts in CT: recognition and avoidance. Radiographics 24, 1679–1691 (2004).
Google Scholar
Duerinckx, A. J. & Macovski, A. Polychromatic streak artifacts in computed tomography images. J. Comput. Assist. Tomogr. 2, 481–487 (1978).
Google Scholar
Joseph, P. M. & Spital, R. D. A method for correcting bone induced artifacts in computed tomography scanners. J. Comput. Assist. Tomogr. 2, 100–108 (1978).
Google Scholar
Botros, A., van Dijk, B. & Killian, M. AutoNR: an automated system that measures ECAP thresholds with the Nucleus Freedom cochlear implant via machine intelligence. Artif. Intell. Med. 40, 15–28 (2007).
Google Scholar