Seebach, D. Organic synthesis—where now? Angew. Chem. Int. Ed. 29, 1320–1367 (1990).
Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).
Google Scholar
Genzink, M. J., Kidd, J. B., Swords, W. B. & Yoon, T. P. Chiral photocatalyst structures in asymmetric photochemical synthesis. Chem. Rev. 122, 1654–1716 (2022).
Google Scholar
Burg, F. & Bach, T. Lactam hydrogen bonds as control elements in enantioselective transition-metal-catalyzed and photochemical reactions. J. Org. Chem. 84, 8815–8836 (2019).
Google Scholar
DeHovitz, J. S. & Hyster, T. K. Photoinduced dynamic radical processes for isomerizations, deracemizations, and dynamic kinetic resolutions. ACS Catal. 12, 8911–8924 (2022).
Google Scholar
Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).
Google Scholar
Silvi, M. & Melchiorre, P. Enhancing the potential of enantioselective organocatalysis with light. Nature 554, 41–49 (2018).
Google Scholar
Arias-Rotondo, D. M. & McCusker, J. K. The photophysics of photoredox catalysis: a roadmap for catalyst design. Chem. Soc. Rev. 45, 5803–5820 (2016).
Google Scholar
Marzo, L., Pagire, S. K., Reiser, O. & König, B. Visible-light photocatalysis: does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 57, 10034–10072 (2018).
Großkopf, J., Kratz, T., Rigotti, T. & Bach, T. Enantioselective photochemical reactions enabled by triplet energy transfer. Chem. Rev. 122, 1626–1653 (2022).
Google Scholar
Buglioni, L., Raymenants, F., Slattery, A., Zondag, S. D. A. & Noël, T. Technological innovations in photochemistry for organic synthesis: flow chemistry, high-throughput experimentation, scale-up, and photoelectrochemistry. Chem. Rev. 122, 2752–2906 (2022).
Google Scholar
Lewis, G. N. A new principle of equilibrium. Proc. Natl Acad. Sci. USA 11, 179–183 (1925).
Google Scholar
Stoll, R. S. & Hecht, S. Artificial light-gated catalyst systems. Angew. Chem. Int. Ed. 49, 5054–5075 (2010).
Kathan, M. & Hecht, S. Photoswitchable molecules as key ingredients to drive systems away from the global thermodynamic minimum. Chem. Soc. Rev. 46, 5536–5550 (2017).
Google Scholar
Molloy, J. J., Morack, T. & Gilmour, R. Positional and geometrical isomerisation of alkenes: the pinnacle of atom economy. Angew. Chem. Int. Ed. 58, 13654–13664 (2019).
Lechner, V. M. et al. Visible-light-mediated modification and manipulation of biomacromolecules. Chem. Rev. 122, 1752–1829 (2022).
Google Scholar
Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020).
Google Scholar
Trowbridge, A. D. et al. Small molecule photocatalysis enables drug target identification via energy transfer. Proc. Natl Acad. Sci. USA 119, e2208077119 (2022).
Google Scholar
Du, J., Skubi, K. L., Schultz, D. M. & Yoon, T. P. A dual-catalysis approach to enantioselective [2 + 2] photocycloadditions using visible light. Science 344, 392–396 (2014).
Google Scholar
Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).
Google Scholar
Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).
Google Scholar
Yoon, T. P. Photochemical stereocontrol using tandem photoredox–chiral Lewis acid catalysis. Acc. Chem. Res. 49, 2307–2315 (2016).
Google Scholar
Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. Comprehensive Asymmetric Catalysis 1st edn (Springer, 1999).
Yoon, T. P. & Jacobsen, E. N. Privileged chiral catalysts. Science 299, 1691–1693 (2003).
Google Scholar
Bach, T., Bergmann, H., Grosch, B. & Harms, K. Highly enantioselective intra- and intermolecular [2 + 2] photocycloaddition reactions of 2-quinolones mediated by a chiral lactam host: host–guest interactions, product configuration, and the origin of the stereoselectivity in solution. J. Am. Chem. Soc. 124, 7982–7990 (2002).
Google Scholar
Tröster, A., Alonso, R., Bauer, A. & Bach, T. Enantioselective intermolecular [2 + 2] photocycloaddition reactions of 2(1H)-quinolones induced by visible light irradiation. J. Am. Chem. Soc. 138, 7808–7811 (2016).
Google Scholar
Bauer, A., Westkämper, F., Grimme, S. & Bach, T. Catalytic enantioselective reactions driven by photoinduced electron transfer. Nature 436, 1139–1140 (2005).
Google Scholar
Huo, H. et al. Asymmetric photoredox transition-metal catalysis activated by visible light. Nature 515, 100–103 (2014).
Google Scholar
Skubi, K. L. et al. Enantioselective excited-state photoreactions controlled by a chiral hydrogen-bonding iridium sensitizer. J. Am. Chem. Soc. 139, 17186–17192 (2017).
Google Scholar
Guo, H., Herdtweck, E. & Bach, T. Enantioselective Lewis acid catalysis in intramolecular [2+2] photocycloaddition reactions of coumarins. Angew. Chem. Int. Ed. 49, 7782–7785 (2010).
Brimioulle, R. & Bach, T. Enantioselective Lewis acid catalysis of intramolecular enone [2+2] photocycloaddition reactions. Science 342, 840–843 (2013).
Google Scholar
Lewis, F. D., Howard, D. K. & Oxman, J. D. Lewis acid catalysis of coumarin photodimerization. J. Am. Chem. Soc. 105, 3344–3345 (1983).
Google Scholar
Shaw, S. & White, J. D. Asymmetric catalysis using chiral salen–metal complexes: recent advances. Chem. Rev. 119, 9381–9426 (2019).
Google Scholar
Baleizão, C. et al. Photochemistry of chiral pentacoordinated Al salen complexes. Chiral recognition in the quenching of photogenerated tetracoordinated Al salen transient by alkenes. Photochem. Photobiol. Sci. 2, 386–392 (2003).
Google Scholar
Cozzi, P. G. et al. Photophysical poperties of Schiff-base metal complexes. New J. Chem. 27, 692–697 (2003).
Google Scholar
Molloy, J. J. et al. Boron-enabled geometric isomerization of alkenes via selective energy-transfer catalysis. Science 369, 302–306 (2020).
Google Scholar
Neveselý, T., Wienhold, M., Molloy, J. J. & Gilmour, R. Advances in the E → Z isomerization of alkenes using small molecule photocatalysts. Chem. Rev. 122, 2650–2694 (2022).
Google Scholar
Sparr, C. & Gilmour, R. Cyclopropyl iminium activation: reactivity umpolung in enantioselective organocatalytic reaction design. Angew. Chem. Int. Ed. 50, 8391–8395 (2011).
Hammond, G. S. & Cole, R. S. Asymmetric induction during energy transfer. J. Am. Chem. Soc. 87, 3256–3257 (1965).
Google Scholar
Ouannes, C., Beugelmans, R. & Roussi, G. Asymmetric induction during transfer of triplet energy. J. Am. Chem. Soc. 95, 8472–8474 (1973).
Google Scholar
Tanko, J. M. & Drumright, R. E. Radical ion probes. I. Cyclopropyl-carbinyl rearrangements of aryl cyclopropyl ketyl anions. J. Am. Chem. Soc. 112, 5362–5363 (1990).
Google Scholar
Kim, S., Chen, P.-P., Houk, K. N. & Knowles, R. R. Reversible homolysis of a carbon–carbon σ-bond enabled by complexation-induced bond-weakening. J. Am. Chem. Soc. 144, 15488–15496 (2022).
Google Scholar
Hölzl-Hobmeier, A. et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564, 240–243 (2018).
Google Scholar
Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven deracemization enabled by excited-state electron transfer. Science 366, 364–369 (2019).
Google Scholar
Tröster, A., Bauer, A., Jandl, C. & Bach, T. Enantioselective visible-light-mediated formation of 3-cyclopropylquinolones by triplet-sensitized deracemization. Angew. Chem. Int. Ed. 58, 3538–3541 (2019).
Li, X. et al. Photochemically induced ring opening of spirocyclopropyl oxindoles: evidence for a triplet 1,3-diradical intermediate and deracemization by a chiral sensitizer. Angew. Chem. Int. Ed. 59, 21640–21647 (2020).
Plaza, M., Jandl, C. & Bach, T. Photochemical deracemization of allenes and subsequent chirality transfer. Angew. Chem. Int. Ed. 59, 12785–12788 (2020).
Großkopf, J. et al. Photochemical deracemization at sp3-hybridized carbon centers via a reversible hydrogen atom transfer. J. Am. Chem. Soc. 143, 21241–21245 (2021).
Plaza, M., Großkopf, J., Breitenlechner, S., Bannwarth, C. & Bach, T. Photochemical deracemization of primary allene amides by triplet energy transfer: a combined synthetic and theoretical study. J. Am. Chem. Soc. 143, 11209–11217 (2021).
Google Scholar
Zhang, C. et al. Catalytic α-deracemization of ketones enabled by photoredox deprotonation and enantioselective protonation. J. Am. Chem. Soc. 143, 13393–13400 (2021).
Google Scholar
Huang, M., Zhang, L., Pan, T. & Luo, S. Deracemization through photochemical E/Z isomerization of enamines. Science 375, 869–874 (2022).
Google Scholar
Kratz, T. et al. Photochemical deracemization of chiral alkenes via triplet energy transfer. J. Am. Chem. Soc. 144, 10133–10138 (2022).
Google Scholar
Schmidt, T. A. & Sparr, C. Photocatalytic deracemisation of cobalt(III) complexes with fourfold stereogenicity. Chem. Comm. 58, 12172–12175 (2022).
Google Scholar
Gualandi, A. et al. Aluminum(III) salen complexes as active photoredox catalysts. Eur. J. Org. Chem. 2020, 1486–1490 (2020).
Google Scholar
Tazuke, S., Kitamura, N. & Kawanishi, Y. Problems of back electron transfer in electron transfer sensitization. J. Photochem. 29, 123–138 (1985).
Google Scholar
Speckmeier, E., Fuchs, P. J. W. & Zeitler, K. A synergistic LUMO lowering strategy using Lewis acid catalysis in water to enable photoredox catalytic, functionalizing C–C cross-coupling of styrenes. Chem. Sci. 9, 7096–7103 (2018).
Google Scholar
Buzzetti, L., Crisenza, G. E. M. & Melchiorre, P. Mechanistic studies in photocatalysis. Angew. Chem. Int. Ed. 58, 3730–3747 (2019).
Zhang, X. & Rovis, T. Photocatalyzed triplet sensitization of oximes using visible light provides a route to nonclassical Beckmann rearrangement products. J. Am. Chem. Soc. 143, 21211–21217 (2021).
Google Scholar
Avery, T. D. et al. A concise route to β-cyclopropyl amino acids utilizing 1,2-dioxines and stabilized phosphonate nucleophiles. J. Org. Chem. 73, 2633–2640 (2008).
Google Scholar
Feng, M., Yang, P., Yang, G., Chen, W. & Chai, Z. FeCl3-promoted [3 + 2] annulations of γ-butyrolactone fused cyclopropanes with heterocumulenes. J. Org. Chem. 83, 174–184 (2018).
Google Scholar
Tamilarasan, V. J. & Srinivasan, K. SnCl4-promoted [3+2] annulation of γ-butyrolactone-fused donor-acceptor cyclopropanes with nitriles: access to γ-butyrolactone-fused 1-pyrrolines. J. Org. Chem. 84, 8782–8787 (2019).
Google Scholar