Strange India All Strange Things About India and world


  • 1.

    Tanabashi, M. et al. Review of particle physics. Phys. Rev. D 98, 030001 (2018).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Bennett, G. W. et al. Final report of the muon E821 anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Davier, M., Hoecker, A., Malaescu, B. & Zhang, Z. A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to (alpha ({m}_{Z}^{2})). Eur. Phys. J. C 80, 241 (2020); erratum 80, 410 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 4.

    Keshavarzi, A., Nomura, D. & Teubner, T. g − 2 of charged leptons, (alpha ({M}_{Z}^{2})), and the hyperfine splitting of muonium. Phys. Rev. D 101, 014029 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Colangelo, G., Hoferichter, M. & Stoffer, P. Two-pion contribution to hadronic vacuum polarization. J. High Energy Phys. 2019, 006 (2019).

    Article 

    Google Scholar 

  • 6.

    Hoferichter, M., Hoid, B. L. & Kubis, B. Three-pion contribution to hadronic vacuum polarization. J. High Energy Phys. 2019, 137 (2019).

    Article 

    Google Scholar 

  • 7.

    Aoyama, T. et al. The anomalous magnetic moment of the muon in the Standard Model. Phys. Rep. 887, 1–166 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 8.

    Bernecker, D. & Meyer, H. B. Vector correlators in lattice QCD: methods and applications. Eur. Phys. J. A 47, 148 (2011).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Lautrup, B. E., Peterman, A. & de Rafael, E. Recent developments in the comparison between theory and experiments in quantum electrodynamics. Phys. Rep. 3, 193–259 (1972).

    ADS 
    Article 

    Google Scholar 

  • 10.

    de Rafael, E. Hadronic contributions to the muon g−2 and low-energy QCD. Phys. Lett. B 322, 239–246 (1994).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Blum, T. Lattice calculation of the lowest order hadronic contribution to the muon anomalous magnetic moment. Phys. Rev. Lett. 91, 052001 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Borsanyi, S. et al. High-precision scale setting in lattice QCD. J. High Energy Phys. 2012, 010 (2012).

    Article 

    Google Scholar 

  • 13.

    Dowdall, R. J., Davies, C. T. H., Lepage, G. P. & McNeile, C. Vus from π and K decay constants in full lattice QCD with physical u, d, s and c quarks. Phys. Rev. D 88, 074504 (2013).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Borsanyi, S. et al. Hadronic vacuum polarization contribution to the anomalous magnetic moments of leptons from first principles. Phys. Rev. Lett. 121, 022002 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Neff, H., Eicker, N., Lippert, T., Negele, J. W. & Schilling, K. On the low fermionic eigenmode dominance in QCD on the lattice. Phys. Rev. D 64, 114509 (2001).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Giusti, L., Hernandez, P., Laine, M., Weisz, P. & Wittig, H. Low-energy couplings of QCD from current correlators near the chiral limit. J. High Energy Phys. 2004, 013 (2004).

    ADS 
    Article 

    Google Scholar 

  • 17.

    DeGrand, T. A. & Schaefer, S. Improving meson two point functions in lattice QCD. Comput. Phys. Commun. 159, 185–191 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Shintani, E. et al. Covariant approximation averaging. Phys. Rev. D 91, 114511 (2015).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Blum, T. et al. Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment. Phys. Rev. Lett. 121, 022003 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Aubin, C. et al. Light quark vacuum polarization at the physical point and contribution to the muon g − 2. Phys. Rev. D 101, 014503 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    de Divitiis, G. M. et al. Isospin breaking effects due to the up-down mass difference in Lattice QCD. J. High Energy Phys. 2012, 124 (2012).

    Article 

    Google Scholar 

  • 22.

    de Divitiis, G. M. et al. Leading isospin breaking effects on the lattice. Phys. Rev. D 87, 114505 (2013).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Colangelo, G., Durr, S. & Haefeli, C. Finite volume effects for meson masses and decay constants. Nucl. Phys. B 721, 136–174 (2005).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Davoudi, Z. & Savage, M. J. Finite-volume electromagnetic corrections to the masses of mesons, baryons and nuclei. Phys. Rev. D 90, 054503 (2014).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Borsanyi, S. et al. Ab initio calculation of the neutron-proton mass difference. Science 347, 1452–1455 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 26.

    Fodor, Z. et al. Quantum electrodynamics in finite volume and nonrelativistic effective field theories. Phys. Lett. B 755, 245–248 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 27.

    Aubin, C. et al. Finite-volume effects in the muon anomalous magnetic moment on the lattice. Phys. Rev. D 93, 054508 (2016).

    ADS 
    Article 

    Google Scholar 

  • 28.

    Bijnens, J. & Relefors, J. Vector two-point functions in finite volume using partially quenched chiral perturbation theory at two loops. J. High Energy Phys. 2017, 114 (2017).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Hansen, M. T. & Patella, A. Finite-volume effects in ({(g-2)}_{mu }^{{rm{HVP}},{rm{LO}}}). Phys. Rev. Lett. 123, 172001 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Jegerlehner, F. & Szafron, R. ({rho }^{0}-gamma ) mixing in the neutral channel pion form factor ({F}_{pi }^{e}) and its role in comparing e+e− with τ spectral functions. Eur. Phys. J. C 71, 1632 (2011).

  • 31.

    Chakraborty, B. et al. The hadronic vacuum polarization contribution to aμ from full lattice QCD. Phys. Rev. D 96, 034516 (2017).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Gérardin, A. et al. The leading hadronic contribution to (g − 2)μ from lattice QCD with Nf = 2 + 1 flavours of O(a) improved Wilson quarks. Phys. Rev. D 100, 014510 (2019).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • 33.

    Davies, C. T. H. et al. Hadronic-vacuum-polarization contribution to the muon’s anomalous magnetic moment from four-flavor lattice QCD. Phys. Rev. D 101, 034512 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Giusti, D., Lubicz, V., Martinelli, G., Sanfilippo, F. & Simula, S. Electromagnetic and strong isospin-breaking corrections to the muon g − 2 from Lattice QCD+QED. Phys. Rev. D 99, 114502 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Giusti, D., Sanfilippo, F. & Simula, S. Light-quark contribution to the leading hadronic vacuum polarization term of the muon g − 2 from twisted-mass fermions. Phys. Rev. D 98, 114504 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 36.

    Shintani, E. et al. Hadronic vacuum polarization contribution to the muon g − 2 with 2+1 flavor lattice QCD on a larger than (10 fm)4 lattice at the physical point. Phys. Rev. D 100, 034517 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Bazavov, A. et al. Gradient flow and scale setting on MILC HISQ ensembles. Phys. Rev. D 93, 094510 (2016).

    ADS 
    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *