Strange IndiaStrange India


  • Adamantidis, A. R., Gutierrez Herrera, C. & Gent, T. C. Oscillating circuitries in the sleeping brain. Nat. Rev. Neurosci. 20, 746–762 (2019).

    Article 
    CAS 

    Google Scholar 

  • Liu, D. & Dan, Y. A motor theory of sleep–wake control: arousal–action circuit. Annu. Rev. Neurosci. 42, 27–46 (2019).

    Article 
    CAS 

    Google Scholar 

  • Funato, H. et al. Forward-genetics analysis of sleep in randomly mutagenized mice. Nature 539, 378–383 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Borbély, A. The two-process model of sleep regulation: beginnings and outlook. J. Sleep Res. 31, e13598 (2022).

    Article 

    Google Scholar 

  • Reichert, S., Pavón Arocas, O. & Rihel, J. The neuropeptide galanin is required for homeostatic rebound sleep following increased neuronal activity. Neuron 104, 370–384.e5 (2019).

    Article 
    CAS 

    Google Scholar 

  • Oikonomou, G. et al. The serotonergic Raphe promote sleep in zebrafish and mice. Neuron 103, 686–701.e8 (2019).

    Article 
    CAS 

    Google Scholar 

  • Ma, Y. et al. Galanin neurons unite sleep homeostasis and α2-adrenergic sedation. Curr. Biol. 29, 3315–3322.e3 (2019).

    Article 
    CAS 

    Google Scholar 

  • Honda, T. et al. A single phosphorylation site of SIK3 regulates daily sleep amounts and sleep need in mice. Proc. Natl Acad. Sci. USA 115, 10458–10463 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Iwasaki, K. et al. Induction of mutant Sik3Sleepy allele in neurons in late infancy increases sleep need. J. Neurosci. 41, 2733–2746 (2021).

    Article 
    CAS 

    Google Scholar 

  • Vega, R. B. et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119, 555–566 (2004).

    Article 
    CAS 

    Google Scholar 

  • Sando, R. 3rd et al. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell 151, 821–834 (2012).

    Article 
    CAS 

    Google Scholar 

  • Zhu, Y. et al. Class IIa HDACs regulate learning and memory through dynamic experience-dependent repression of transcription. Nat. Commun. 10, 3469 (2019).

    Article 
    ADS 

    Google Scholar 

  • Yang, X.-J. & Seto, E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 9, 206–218 (2008).

    Article 
    CAS 

    Google Scholar 

  • Park, S.-Y. & Kim, J.-S. A short guide to histone deacetylases including recent progress on class II enzymes. Exp. Mol. Med. 52, 204–212 (2020).

    Article 
    CAS 

    Google Scholar 

  • Berdeaux, R. et al. SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nat. Med. 13, 597–603 (2007).

    Article 
    CAS 

    Google Scholar 

  • Henriksson, E. et al. SIK2 regulates CRTCs, HDAC4 and glucose uptake in adipocytes. J. Cell Sci. 128, 472–486 (2015).

    CAS 

    Google Scholar 

  • Wang, Z. et al. Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature 558, 435–439 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • van der Linden, A. M., Nolan, K. M. & Sengupta, P. KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC. EMBO J. 26, 358–370 (2007).

    Article 

    Google Scholar 

  • Lanjuin, A. & Sengupta, P. Regulation of chemosensory receptor expression and sensory signaling by the KIN-29 Ser/Thr kinase. Neuron 33, 369–381 (2002).

    Article 
    CAS 

    Google Scholar 

  • Grubbs, J. J., Lopes, L. E., van der Linden, A. M. & Raizen, D. M. A salt-induced kinase is required for the metabolic regulation of sleep. PLoS Biol. 18, e3000220 (2020).

    Article 
    CAS 

    Google Scholar 

  • Darling, N. J., Toth, R., Arthur, J. S. C. & Clark, K. Inhibition of SIK2 and SIK3 during differentiation enhances the anti-inflammatory phenotype of macrophages. Biochem. J. 474, 521–537 (2017).

    Article 
    CAS 

    Google Scholar 

  • Lizcano, J. M. et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23, 833–843 (2004).

    Article 
    CAS 

    Google Scholar 

  • Uebi, T. et al. Involvement of SIK3 in glucose and lipid homeostasis in mice. PLoS ONE 7, e37803 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Franken, P., Chollet, D. & Tafti, M. The homeostatic regulation of sleep need is under genetic control. J. Neurosci. 21, 2610–2621 (2001).

    Article 
    CAS 

    Google Scholar 

  • Vassalli, A. & Franken, P. Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need. Proc. Natl Acad. Sci. USA 114, E5464–E5473 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cirelli, C. The genetic and molecular regulation of sleep: from fruit flies to humans. Nat. Rev. Neurosci. 10, 549–560 (2009).

    Article 
    CAS 

    Google Scholar 

  • Zhou, R. et al. A signalling pathway for transcriptional regulation of sleep amount in mice. Nature https://doi.org/10.1038/s41586-022-05510-6 (2022).

  • Williams, S. R. et al. Haploinsufficiency of HDAC4 causes brachydactyly mental retardation syndrome, with brachydactyly type E, developmental delays, and behavioral problems. Am. J. Hum. Genet. 87, 219–228 (2010).

    Article 
    CAS 

    Google Scholar 

  • Hobara, T. et al. Altered gene expression of histone deacetylases in mood disorder patients. J. Psychiatr. Res. 44, 263–270 (2010).

    Article 

    Google Scholar 

  • Vyazovskiy, V. V. et al. Local sleep in awake rats. Nature 472, 443–447 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Krone, L. B. et al. A role for the cortex in sleep–wake regulation. Nat. Neurosci. 24, 1210–1215 (2021).

    Article 
    CAS 

    Google Scholar 

  • Brüning, F. et al. Sleep–wake cycles drive daily dynamics of synaptic phosphorylation. Science 366, eaav3617 (2019).

    Article 

    Google Scholar 

  • Chung, S. et al. Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature 545, 477–481 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Potthoff, M. J. et al. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J. Clin. Invest. 117, 2459–2467 (2007).

    Article 
    CAS 

    Google Scholar 

  • Miyoshi, C. et al. Methodology and theoretical basis of forward genetic screening for sleep/wakefulness in mice. Proc. Natl Acad. Sci. USA 116, 16062–16067 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mizuno, S. et al. Simple generation of albino C57BL/6J mice with G291T mutation in the tyrosinase gene by the CRISPR/Cas9 system. Mamm. Genome 25, 327–334 (2014).

    Article 
    CAS 

    Google Scholar 

  • Sato, Y. et al. A mutation in transcription factor MAFB causes focal segmental glomerulosclerosis with Duane retraction syndrome. Kidney Int. 94, 396–407 (2018).

    Article 
    CAS 

    Google Scholar 

  • Iwasaki, K., Hotta-Hirashima, N., Funato, H. & Yanagisawa, M. Protocol for sleep analysis in the brain of genetically modified adult mice. STAR Protoc. 2, 100982 (2021).

    Article 
    CAS 

    Google Scholar 

  • Suzuki-Abe, H. et al. Metabolomic and pharmacologic analyses of brain substances associated with sleep pressure in mice. Neurosci. Res. 177, 16–24 (2022).

    Article 
    CAS 

    Google Scholar 

  • Park, M. et al. Loss of the conserved PKA sites of SIK1 and SIK2 increases sleep need. Sci. Rep. 10, 8676 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Misztal, K. et al. TCF7L2 mediates the cellular and behavioral response to chronic lithium treatment in animal models. Neuropharmacology 113, 490–501 (2017).

    Article 
    CAS 

    Google Scholar 

  • Guo, P. et al. Rapid and simplified purification of recombinant adeno-associated virus. J. Virol. Methods 183, 139–146 (2012).

    Article 
    CAS 

    Google Scholar 

  • Honda, T. et al. Ablation of ventral midbrain/pons GABA neurons induces mania-like behaviors with altered sleep homeostasis and dopamine D2R-mediated sleep reduction. iScience 23, 101240 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Takase, K., Tsuneoka, Y., Oda, S., Kuroda, M. & Funato, H. High-fat diet feeding alters olfactory-, social-, and reward-related behaviors of mice independent of obesity. Obesity 24, 886–894 (2016).

    Article 
    CAS 

    Google Scholar 

  • Kumar, D. et al. Sparse activity of hippocampal adult-born neurons during REM sleep is necessary for memory consolidation. Neuron 107, 552–565.e10 (2020).

    Article 
    CAS 

    Google Scholar 

  • Li, C. H. & Lee, C. K. Minimum cross entropy thresholding. Pattern Recognit26, 617–625 (1993).

    Article 
    ADS 

    Google Scholar 

  • Fujiyama, T. et al. Forebrain Ptf1a is required for sexual differentiation of the brain. Cell Rep. 24, 79–94 (2018).

    Article 
    CAS 

    Google Scholar 

  • Funato, H., Saito-Nakazato, Y. & Takahashi, H. Axonal growth from the habenular nucleus along the neuromere boundary region of the diencephalon is regulated by semaphorin 3F and netrin-1. Mol. Cell. Neurosci. 16, 206–220 (2000).

    Article 
    CAS 

    Google Scholar 

  • Henriksson, E. et al. The AMPK-related kinase SIK2 is regulated by cAMP via phosphorylation at Ser 358 in adipocytes. Biochem. J. 444, 503–514 (2012).

    Article 
    CAS 

    Google Scholar 

  • Hossain, M. S. et al. Identification of mutations through dominant screening for obesity using C57BL/6 substrains. Sci. Rep. 6, 32453 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Barbosa, A. C. et al. MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function. Proc. Natl Acad. Sci. USA 105, 9391–9396 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bragina, L. et al. Analysis of synaptotagmin, SV2, and Rab3 expression in cortical glutamatergic and GABAergic axon terminals. Front. Cell. Neurosci. 5, 32 (2011).

    CAS 

    Google Scholar 

  • Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article 
    CAS 

    Google Scholar 

  • Gene Ontology Consortium. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 49, D325–D334 (2021).

    Article 

    Google Scholar 

  • Raizen, D. M. et al. Lethargus is a Caenorhabditis elegans sleep-like state. Nature 451, 569–572 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Singh, K. et al. C. elegans Notch signaling regulates adult chemosensory response and larval molting quiescence. Curr. Biol. 21, 825–834 (2011).

    Article 
    CAS 

    Google Scholar 

  • Yu, Z. et al. Beyond t test and ANOVA: applications of mixed-effects models for more rigorous statistical analysis in neuroscience research. Neuron 110, 21–35 (2021).

    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *