Strange IndiaStrange India


  • Rudick, C. S., Mihos, J. C. & McBride, C. K. The quantity of intracluster light: comparing theoretical and observational measurement techniques using simulated clusters. Astrophys. J. 732, 48–64 (2011).

    Article 
    ADS 

    Google Scholar 

  • Contini, E., De Lucia, G., Villalobos, Á. & Bogani, S. On the formation and physical properties of the intracluster light in hierarchical galaxy formation models. Mon. Not. R. Astron. Soc. 437, 3787–3802 (2014).

    Article 
    ADS 

    Google Scholar 

  • Burke, C., Collins, C. A., Stott, J. P. & Hilton, M. Measurement of the intracluster at z ~ 1. Mon. Not. R. Astron. Soc. 425, 2058–2068 (2012).

    Article 
    ADS 

    Google Scholar 

  • Ko, J. & Jee, M. J. Evidence for the existence of abundant intracluster light at z = 1.24. Astrophys. J. 862, 95–103 (2018).

    Article 
    ADS 

    Google Scholar 

  • Montes, M. & Trujillo, I. Intracluster light at the Frontier – II. The Frontier Fields Clusters. Mon. Not. R. Astron. Soc. 474, 917–932 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • DeMaio, T. et al. The growth of brightest cluster galaxies and intracluster light over the past 10 billion years. Mon. Not. R. Astron. Soc. 491, 3751–3759 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gonzalez, A. H. et al. Galaxy cluster baryon fractions revisited. Astrophys. J. 778, 14–29 (2013).

    Article 
    ADS 

    Google Scholar 

  • Presotto, V. et al. Intracluster light properties in the CLASH-VLT cluster MACS J1206.2-0847. Astron. Astrophys. 565, A126 (2014).

    Article 

    Google Scholar 

  • Contini, E., Yi, S. K. & Kang, X. Theoretical predictions of colors and metallicity of the intracluster light. Astrophys. J. 871, 24–33 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Burke, C., Hilton, M. & Collins, C. Coevolution of brightest cluster galaxies and intracluster light using CLASH. Mon. Not. R. Astron. Soc. 449, 2353–2367 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Morishita, T. et al. Characterizing intracluster light in the Hubble Frontier Fields. Astrophys. J. 846, 139–151 (2017).

    Article 
    ADS 

    Google Scholar 

  • Almao-Martinez, K. A. & Blakeslee, J. P. Specific frequencies and luminosity profiles of cluster galaxies and intracluster light in Abell 1689. Astrophys. J. 849, 6–24 (2017).

    Article 
    ADS 

    Google Scholar 

  • Ellien, A. et al. The complex case of MACS J0717.5+6745 and its extended filament: intra-cluster light, galaxy luminosity function, and galaxy orientations. Astron. Astrophys. 628, A34 (2019).

    Article 
    CAS 

    Google Scholar 

  • Feldmeier, J. J. et al. Intracluster planetary nebulae in the Virgo Cluster. III. Luminosity of the intracluster light and tests of the spatial distribution. Astrophys. J. 615, 196–208 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Griffiths, A. et al. MUSE spectroscopy and deep observations of a unique compact JWST target, lensing cluster CLIO. Mon. Not. R. Astron. Soc. 475, 2853–2869 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jee, M. J. Tracing the peculiar dark matter structure in the galaxy cluster Cl 0024+17 with intracluster stars and gas. Astrophys. J. 717, 420–434 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jimenez-Teja, Y. et al. Unveiling the dynamical state of massive clusters through the ICL fraction. Astrophys. J. 857, 79–96 (2018).

    Article 
    ADS 

    Google Scholar 

  • Jimenez-Teja, Y. et al. J-PLUS: analysis of the intracluster light in the Coma cluster. Astrophys. J. 522, A183 (2019).

    Google Scholar 

  • Krick, J. E. & Berstein, R. A. Diffuse optical light in galaxy clusters. II. Correlations with cluster properties. Astrophys. J. 134, 466–493 (2007).

    Google Scholar 

  • Mihos, J. C. Intragroup and intracluster light. in Proc. IAU Symp.: The General Assembly of Galaxy Halos: Structure, Origin and Evolution vol. 317 (eds Bragaglia, A., Arnaboldi, M., Rejkuba, M. & Romano, D.) 27–34 (Int. Astron. Union, 2015).

  • Yoo, J. et al. Intracluster light properties in a fossil cluster at z = 0.47. Mon. Not. R. Astron. Soc. 508, 2634–2649 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Montes, M. The faint light in groups and clusters of galaxies. Nature. Astro. 6, 308–316 (2022).

    Article 
    ADS 

    Google Scholar 

  • Navarro, J. F., Frenck, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Asensio, I. A. et al. The intracluster light as a tracer of the total matter density distribution: a view from simulations. Mon. Not. R. Astron. Soc. 494, 1859–1864 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pillepich, A. et al. First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. Mon. Not. R. Astron. Soc. 475, 648–675 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Murante, G. et al. The diffuse light in simulations of galaxy clusters. Astrophys. J. Lett. 607, 83–86 (2004).

    Article 
    ADS 

    Google Scholar 

  • Purcell, C. W., Bullock, J. S. & Zentner, A. R. Shredded galaxies as the source of diffuse intrahalo light on varying scales. Astrophys. J. 666, 20–33 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Furnell, K. E. et al. The growth of intracluster light in XCS-HSC galaxy clusters from 0.1 < z < 0.5. Mon. Not. R. Astron. Soc. 502, 2419–2437 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Guennou, L. et al. Intracluster light in clusters of galaxies at redshifts 0.4 < z < 0.8. Astron. Astrophys. 537, A64 (2012).

    Article 

    Google Scholar 

  • Contini, E. On the origin and evolution of the intra-cluster light: a brief review of the most recent developments. MDPI. 9, 60 (2021).

    Google Scholar 

  • Murante, G. et al. The importance of mergers for the origin of intracluster stars in cosmological simulations of galaxy clusters. Mon. Not. R. Astron. Soc. 377, 2–16 (2007).

    Article 
    ADS 

    Google Scholar 

  • Contini, E., Yi, S. K. & Kang, E. The different growth pathways of brightest cluster galaxies and intracluster light. Mon. Not. R. Astron. Soc. 479, 932–944 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Tang, L. et al. An investigation of intracluster light evolution using cosmological hydrodynamical simulations. Astrophys. J. 859, 85–97 (2018).

    Article 
    ADS 

    Google Scholar 

  • DeMaio, T. et al. On the origin of the intracluster light in massive galaxy clusters. Mon. Not. R. Astron. Soc. 448, 1162–1177 (2015).

    Article 
    ADS 

    Google Scholar 

  • DeMaio, T. et al. Lost but not forgotten: intracluster light in galaxy groups and clusters. Mon. Not. R. Astron. Soc. 474, 3009–3031 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sahu, K. WFC3 Data Handbook v.5.5 (STScI, 2021).

  • Hoffmann, S. L. et al. The DrizzlePac Handbook v. 2.0 (STScI, 2021).

  • Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. 117, 393–404 (1996).

    ADS 

    Google Scholar 

  • Stone, C. J. et al. AutoProf – I. An automated non-parametric light profile pipeline for modern galaxy surveys. Mon. Not. R. Astron. Soc. 508, 1870–1887 (2021).

    Article 
    ADS 

    Google Scholar 

  • Sérsic, J. L. Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy. Boletin de la Asociacion Argentina de Astronomia La Plata Argentina 6, 41–43 (1963).

    ADS 

    Google Scholar 

  • Krist, J. Tiny Tim: an HST PSF simulator. Astronomical Data Analysis Software and Systems II. 52, 536 (1993).

    ADS 

    Google Scholar 

  • Oser, L. et al. The two phases of galaxy formation. Astrophys. J. 725, 2312–2323 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Huang, S. et al. The Carnegie-Irvine Galaxy Survey. III. The three-component structure of nearby elliptical galaxies. Astrophys. J. 766, 47 (2013).

    Article 
    ADS 

    Google Scholar 

  • Huang, S. et al. The Carnegie-Irvine Galaxy Survey. IV. A method to determine the average mass ratio of mergers that built massive elliptical galaxies. Astrophys. J. 821, 114–133 (2016).

    Article 
    ADS 

    Google Scholar 

  • Gill, J. Bayesian Methods: A Social Behavioral Science Approch 2nd edn (CRC, 2008).

  • Balogh, M. L. et al. The GOGREEN and GCLASS surveys: first data release. Mon. Not. R. Astron. Soc. 500, 358–387 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Santos, J. S. et al. Multiwavelength observations of a rich galaxy cluster at z ~ 1. The HST/ACS colour-magnitude diagram. Astron. Astrophys. 501, 49–60 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gongalez, A. H. et al. The massive and distant clusters of WISE Survey: MOO J1142+1527, a 1015M galaxy cluster at z = 1.19. Astrophys. J. L. 812, L40 (2015).

    Article 
    ADS 

    Google Scholar 

  • Demarco, R. et al. VLT and ACS observations of RDCS J1252.9-2927: dynamical structure and galaxy populations in a massive cluster at z = 1.237. Astrophys. J. 663, 164–182 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Decker, B. et al. The massive and distant clusters of WISE Survey. VI. Stellar mass fractions of a sample of high-redshift infrared-selected clusters. Astrophys. J. 878, 72–84 (2019).

    Article 
    ADS 

    Google Scholar 

  • Santos, J. S. et al. Dust-obscured star formation in the outskirts of XMMU J2235.3-2557, a massive galaxy cluster at z = 1.4. Mon. Not. R. Astron. Soc. 433, 1287–1299 (2013).

    Article 
    ADS 

    Google Scholar 

  • Webb, T. M. A. et al. The star formation history of BCGs to z = 1.8 from the SpARCS/SWIRE Survey: evidence for significant in situ star formation at high redshift. Astrophys. J. 814, 96–107 (2015).

    Article 
    ADS 

    Google Scholar 

  • Stanford, S. A. et al. IDCS J1426.5+3508: discovery of a massive, infrared-selected galaxy cluster at z = 1.75. Astrophys. J. 753, 164–171 (2012).

    Article 
    ADS 

    Google Scholar 

  • Newman, A. B. et al. Spectroscopic confirmation of the rich z = 1.80 galaxy cluster JKCS 041 using the WFC3 grism: environmental trends in the ages and structure of quiescent galaxies. Astrophys. J. 788, 51–76 (2014).

    Article 
    ADS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *