Strange India All Strange Things About India and world


  • Patch, A.-M. et al. Whole–genome characterization of chemoresistant ovarian cancer. Nature 521, 489–494 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • US Cancer Statistics Working Group. US Cancer Statistics Data Visualizations Tool, based on 2019 submission data (1999–2017). Centers for Disease Control and Prevention www.cdc.gov/cancer/dataviz (2020).

  • Jayson, G. C., Kohn, E. C., Kitchener, H. C. & Ledermann, J. A. Ovarian cancer. Lancet 384, 1376–1388 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Tothill, R. W. et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin. Cancer Res. 14, 5198–5208 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vaughan, S. et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nat. Rev. Cancer 11, 719–725 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dias, M. P., Moser, S. C., Ganesan, S. & Jonkers, J. Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 18, 773–791 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Yeung, T. L. et al. Cellular and molecular processes in ovarian cancer metastasis. Am. J. Physiol. 309, C444–C456 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Worzfeld, T. et al. The unique molecular and cellular microenvironment of ovarian cancer. Front. Oncol. 7, 24 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parker, B. S., Rautela, J. & Hertzog, P. J. Antitumour actions of interferons: implications for cancer therapy. Nat. Rev. Cancer 16, 131–144 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Fung, K. Y. et al. Interferon-ε protects the female reproductive tract from viral and bacterial infection. Science 339, 1088–1092 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stifter, S. A. et al. Defining the distinct, intrinsic properties of the novel type I interferon, IFNϵ. J. Biol. Chem. 293, 3168–3179 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hardy, M. P., Owczarek, C. M., Jermiin, L. S., Ejdebäck, M. & Hertzog, P. J. Characterization of the type I interferon locus and identification of novel genes. Genomics 84, 331–345 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nagarajan, U. M. et al. Type I interferon signaling exacerbates Chlamydia muridarum genital infection in a murine model. Infect. Immun. 76, 4642–4648 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stone, M. L. et al. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc. Natl Acad. Sci. USA 114, E10981–E10990 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Labidi-Galy, S. I. et al. High grade serous ovarian carcinomas originate in the fallopian tube. Nat. Commun. 8, 1093 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, T. Z. et al. CSIOVDB: a microarray gene expression database of epithelial ovarian cancer subtype. Oncotarget 6, 43843–43852 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Domcke, S., Sinha, R., Levine, D. A., Sander, C. & Schultz, N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat. Commun. 4, 2126 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Greenaway, J., Moorehead, R., Shaw, P. & Petrik, J. Epithelial–stromal interaction increases cell proliferation, survival and tumorigenicity in a mouse model of human epithelial ovarian cancer. Gynecol. Oncol. 108, 385–394 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leong, H. S. et al. Efficient molecular subtype classification of high-grade serous ovarian cancer. J. Pathol. 236, 272–277 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rodriguez, G. M., Galpin, K. J. C., McCloskey, C. W. & Vanderhyden, B. C. The tumor microenvironment of epithelial ovarian cancer and its influence on response to immunotherapy. Cancers 10, 242 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Preston, C. C., Goode, E. L., Hartmann, L. C., Kalli, K. R. & Knutson, K. L. Immunity and immune suppression in human ovarian cancer. Immunotherapy 3, 539–556 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Hwang, S. Y. et al. A null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons α and β and alters macrophage responses. Proc. Natl Acad. Sci. USA. 92, 11284–11288 (1995).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nesic, K. et al. Acquired RAD51C promoter methylation loss causes PARP inhibitor resistance in high-grade serous ovarian carcinoma. Cancer Res. 81, 4709–4772 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ho, G.-Y. et al. Epithelial-to-mesenchymal transition supports ovarian carcinosarcoma tumorigenesis and confers sensitivity to microtubule-targeting with eribulin. Cancer Res. 82, 4457–4473 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ishizuka, J. J. et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565, 43–48 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Salomoni, P. & Pandolfi, P. P. The role of PML in tumor suppression. Cell 108, 165–170 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hou, J. et al. Gene expression profiling to predict and assess the consequences of therapy-induced virus eradication in chronic hepatitis C virus infection. J. Virol. 88, 12254–12264 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walton, J. et al. CRISPR/Cas9-mediated Trp53and Brca2 knockout to generate improved murine models of ovarian high-grade serous carcinoma. Cancer Res. 76, 6118–6129 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, L. et al. Hepatic gene expression discriminates responders and nonresponders in treatment of chronic hepatitis C viral infection. Gastroenterology 128, 1437–1444 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • François-Newton, V. et al. USP18-based negative feedback control is induced by type I and type III interferons and specifically inactivates interferon α response. PLoS ONE 6, e22200 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lheureux, S., Braunstein, M. & Oza, A. M. Epithelial ovarian cancer: evolution of management in the era of precision medicine. CA Cancer J. Clin. 69, 280–304 (2019).

  • Barriga, F. M. et al. MACHETE identifies interferon-encompassing chromosome 9p21.3 deletions as mediators of immune evasion and metastasis. Nat. Cancer 3, 1367–1385 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bidwell, B. N. et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat. Med. 18, 1224–1231 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Capobianco, A., Cottone, L., Monno, A., Manfredi, A. A. & Rovere-Querini, P. The peritoneum: healing, immunity, and diseases. J. Pathol. 243, 137–147 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Mitra, A. K. in Tumor Metastasis (ed. Xu, K.) Ch. 3 https://doi.org/10.5772/64700 (IntechOpen, 2016).

  • Roby, K. F. et al. Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis 21, 585–591 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stifter, S. A. et al. Purification and biological characterization of soluble, recombinant mouse IFNβ expressed in insect cells. Protein Expr. Purif. 94, 7–14 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brinkman, E. K., Chen, T., Amendola, M. & Van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. https://www.r-project.org (R Foundation for Statistical Computing, 2019).

  • Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, S. & Meltzer, P. S. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 23, 1846–1847 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Durinck, S. et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21, 3439–3440 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ritchie, M. E. et al. Empirical array quality weights in the analysis of microarray data. BMC Bioinformatics 7, 261 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCarthy, D. J. & Smyth, G. K. Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics 25, 765–771 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

  • Alhamdoosh, M. et al. Combining multiple tools outperforms individual methods in gene set enrichment analyses. Bioinformatics 33, 414–424 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tian, L. et al. scPipe: a flexible R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data. PLoS Comput. Biol. 14, e1006361 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, e47 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wakefield, M. J. Xenomapper: mapping reads in a mixed species context. J. Open Source Softw. 1, 18 (2016).

    Article 
    ADS 

    Google Scholar 

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, R. et al. Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Res. 43, e97–e97 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, D. & Smyth, G. K. Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res. 40, e133 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phipson, B., Lee, S., Majewski, I. J., Alexander, W. S. & Smyth, G. K. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann. Appl. Stat. 10, 946–963 (2016).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).

    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *