Strange India All Strange Things About India and world


  • Ma, L. Y. et al. China cardiovascular diseases report 2018: an updated summary. J. Geriatr. Cardiol. 17, 1–8 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nioi, P. et al. Variant ASGR1 associated with a reduced risk of coronary artery disease. N. Engl. J. Med. 374, 2131–2141 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Ashwell, G. & Harford, J. Carbohydrate-specific receptors of the liver. Annu. Rev. Biochem. 51, 531–554 (1982).

    CAS 
    PubMed 

    Google Scholar 

  • Luo, J., Yang, H. & Song, B. L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 21, 225–245 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ge, L. et al. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab. 7, 508–519 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Fruchart, J. C. et al. The residual risk reduction initiative: a call to action to reduce residual vascular risk in dyslipidaemic patients. Diabetes Vasc. Dis. Res. 5, 319–335 (2008).

    Google Scholar 

  • Berge, K. E. et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290, 1771–1775 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, L. et al. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J. Clin. Invest. 110, 671–680 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Repa, J. J. et al. Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors α and β. J. Biol. Chem. 277, 18793–18800 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, B. & Tontonoz, P. Liver X receptors in lipid signalling and membrane homeostasis. Nat. Rev. Endocrinol. 14, 452–463 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, Y. et al. Hypomorphic ASGR1 modulates lipid homeostasis via INSIG1-mediated SREBP signaling suppression. JCI Insight 6, e147038 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, B. et al. Deficiency of ASGR1 in pigs recapitulates reduced risk factor for cardiovascular disease in humans. PLoS Genet. 17, e1009891 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tozawa, R. I. et al. Asialoglycoprotein receptor deficiency in mice lacking the major receptor subunit. Its obligate requirement for the stable expression of oligomeric receptor. J. Biol. Chem. 276, 12624–12628 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J. Clin. Invest. 122, 1688–1699 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, K. H. et al. Liver X receptor ligands suppress ubiquitination and degradation of LXRα by displacing BARD1/BRCA1. Mol. Endocrinol. 23, 466–474 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • González, A., Hall, M. N., Lin, S. C. & Hardie, D. G. AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control. Cell Metab. 31, 472–492 (2020).

    PubMed 

    Google Scholar 

  • Abu-Remaileh, M. et al. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 358, 807–813 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palm, W. et al. The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell 162, 259–270 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wyant, G. A. et al. mTORC1 activator SLC38A9 Is required to efflux essential amino acids from lysosomes and use protein as a nutrient. Cell 171, 642–654.e12 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hesketh, G. G. et al. The GATOR-Rag GTPase pathway inhibits mTORC1 activation by lysosome-derived amino acids. Science 370, 351–356 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ling, N. X. Y. et al. mTORC1 directly inhibits AMPK to promote cell proliferation under nutrient stress. Nat. Metab. 2, 41–49 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peterson, T. R. et al. MTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146, 408–420 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, X. Y. et al. Feeding induces cholesterol biosynthesis via the mTORC1–USP20–HMGCR axis. Nature 588, 479–484 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Han, Y. et al. Post-translational regulation of lipogenesis via AMPK-dependent phosphorylation of insulin-induced gene. Nat. Commun. 10, 623 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13, 376–388 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koobotse, M. O., Schmidt, D., Holly, J. M. P. & Perks, C. M. Glucose concentration in cell culture medium influences the BRCA1‐mediated regulation of the lipogenic action of IGF‐i in breast cancer cells. Int. J. Mol. Sci. 21, 1–18 (2020).

    Google Scholar 

  • Myers, R. W. et al. Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 357, 507–511 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zong, Y. et al. Hierarchical activation of compartmentalized pools of AMPK depends on severity of nutrient or energy stress. Cell Res. 29, 460–473 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, C. S. et al. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 548, 112–116 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942–946 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hsieh, J. et al. TTC39B deficiency stabilizes LXR reducing both atherosclerosis and steatohepatitis. Nature 535, 303–307 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marton, A. et al. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation. Nat. Rev. Nephrol. 17, 65–77 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, S. et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347, 188–194 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noel, M. et al. Probing the CMP-sialic acid donor specificity of two human beta-d-galactoside sialyltransferases (ST3Gal I and ST6Gal I) selectively acting on O- and N-glycosylproteins. ChemBioChem 18, 1251–1259 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benoist, F. et al. Cholesteryl ester transfer protein mediates selective uptake of high density lipoprotein cholesteryl esters by human adipose tissue. J. Biol. Chem. 272, 23572–23577 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Hough, J. L. & Zilversmit, D. B. Comparison of various methods for in vitro cholesteryl ester labeling of lipoproteins from hypercholesterolemic rabbits. Biochim. Biophys. Acta 792, 338–347 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Adam, R. C. et al. Angiopoietin-like protein 3 governs LDL-cholesterol levels through endothelial lipase-dependent VLDL clearance. J. Lipid Res. 61, 1271–1286 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published.