Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
Google Scholar
Phillips, O. L. & Brienen, R. J. W. Carbon uptake by mature Amazon forests has mitigated Amazon nations’ carbon emissions. Carbon Balance Manag. 12, 1 (2017).
Google Scholar
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
Google Scholar
Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).
Google Scholar
Gatti, L. V. et al. CO2 vertical profiles on four sites over Amazon from 2010 to 2018. PANGAEA https://doi.org/10.1594/PANGAEA.926834 (2021).
Gatti, L. V. et al. CO2 vertical profiles on four sites over Amazon from 2019 to 2020. PANGAEA https://doi.pangaea.de/10.1594/PANGAEA.949643 (2023).
PRODES. Amazon Deforestation Monitoring Project (PRODES/INPE). http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes (2022).
BDQueimadas. INPE Biomass burning Program. https://queimadas.dgi.inpe.br/queimadas/bdqueimadas (2022).
IBAMA MMA Brazilian Government. IBAMA field inspection and judgments data between 2010 and 2020. https://dados.gov.br/dados/conjuntos-dados/julgamentos-de-auto-de-infracao-realizado-no-ambito-do-ibama (2022).
Saatchi, S., Houghton, R. A., dos Santos Alvalá, R. C., Soares, J. V. & Yu, Y. Distribution of aboveground live biomass in the Amazon basin. Glob. Chang. Biol. 13, 816–837 (2007).
Google Scholar
Malhi, Y. et al. in Amazon Assessment Report 2021 Ch. 6 (eds Nobre, C. et al.) (United Nations Sustainable Development Solutions Network, 2021).
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).
Google Scholar
Aragão, L. E. O. C. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).
Google Scholar
Nobre C. et al. (eds) Amazon Assessment Report 2021 (United Nations Sustainable Development Solutions Network, 2021).
Costa, M. H. & Pires, G. F. Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int. J. Climatol. 30, 1970–1979 (2010).
Google Scholar
Costa, M. H. et al. in Amazon Assessment Report 2021 Ch. 7 (eds Nobre, C. et al.) (United Nations Sustainable Development Solutions Network, 2021).
Leite-Filho, A. T., Costa, M. H. & Fu, R. The southern Amazon rainy season: the role of deforestation and its interactions with large-scale mechanisms. Int. J. Climatol. 40, 2328–2341 (2020).
Google Scholar
Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahão, G. M. & Börner, J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 12, 2591 (2021).
Google Scholar
Barbosa, L. G., Alves, M. A. S. & Grelle, C. E. V. Actions against sustainability: dismantling of the environmental policies in Brazil. Land Use Policy 104, 105384 (2021).
Google Scholar
Alencar, A., Silvestrini, R., Gomes, J. & Savian, G. Amazon in flames: the new and alarming level of deforestation in the Amazon. Technical Note, IPAM – Amazon Environmental Research Institute, https://ipam.org.br/bibliotecas/amazon-in-flames-9-the-new-and-alarming-level-of-deforestation-in-the-amazon/ (2022).
Gatti, L. V. et al. in Amazon Assessment Report 2021 Cross Ch. 1 (eds Nobre, C. et al.) (United Nations Sustainable Development Solutions Network, 2021).
Silva Junior, C. H. L. et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, eaaz8360 (2020).
Google Scholar
Aguiar, A. P. D. et al. Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon. Glob. Chang. Biol. 22, 1821–1840 (2016).
Google Scholar
Assis, T. O. et al. CO2 emissions from forest degradation in Brazilian Amazon. Environ. Res. Lett. 15, 104035 (2020).
Google Scholar
Feng, L. et al. Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCH4:XCO2 retrievals, 2010–2014. Atmos. Chem. Phys. 17, 4781–4797 (2017).
Google Scholar
Ministério da Indústria, Comércio Exterior e Serviços (MDIC). Comexstat. Wood exportation http://comexstat.mdic.gov.br/pt/comex-vis (accessed 8 July 2022).
Instituto Brasileiro de Geografia e Estatística (IBGE) Statistics, Brazilian Institute of Agriculture, Livestock and others. https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html?t=series-historicas (accessed 8 July 2022).
Instituto Brasileiro de Geografia e Estatística (IBGE). Cattle. https://sidra.ibge.gov.br/tabela/3939#resultado (accessed 8 July 2022).
Soares-Filho, B. et al. Cracking Brazil’s forest code. Science 344, 363–364 (2014).
Google Scholar
Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–1123 (2014).
Google Scholar
Soares-Filho, B. et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Natl Acad. Sci. 107, 10821–10826 (2010).
Google Scholar
Ministério do Meio Ambiente (MMA). PPCDAm. http://redd.mma.gov.br/pt/acompanhamento-e-a-analise-de-impacto-das-politicas-publicas/ppcdam (2017).
Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA). Instrução Normativa 3, de 23 de janeiro de 2018 (regulatory instruction) (IBAMA, 2018).
West, T. A. P. & Fearnside, P. M. Brazil’s conservation reform and the reduction of deforestation in Amazonia. Land Use Policy 100, 105072 (2021).
Google Scholar
Hargrave, J. & Kis-Katos, K. Economic causes of deforestation in the Brazilian Amazon: a panel data analysis for the 2000s. Environ. Resour. Econ. 54, 471–494 (2013).
Google Scholar
Börner, J., Kis-Katos, K., Hargrave, J. & König, K. Post-crackdown effectiveness of field-based forest law enforcement in the Brazilian Amazon. PLoS One 10, e0121544 (2015).
Google Scholar
Soares-Filho, B. et al. Brazil’s market for trading forest certificates. PLoS One 11, e0152311 (2016).
Google Scholar
Aragão, L. E. O. C. et al. Environmental change and the carbon balance of Amazonian forests. Biol. Rev. 89, 913–931 (2014).
Google Scholar
Global Monitoring Laboratory. Trends in atmospheric carbon dioxide. https://gml.noaa.gov/ccgg/trends/gl_gr.html (accessed 8 July 2022).
Gloor, E. et al. Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170302 (2018).
Google Scholar
Withey, K. et al. Quantifying immediate carbon emissions from El Niño-mediated wildfires in humid tropical forests. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170312 (2018).
Google Scholar
NOAA/National Weather Service. Oceanic Niño Index (ONI). https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (2022).
Gatti, L. V. et al. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506, 76–80 (2014).
Google Scholar
Eva, H. et al. A Proposal for Defining the Geographical Boundaries of Amazonia. ISBN 9279000128 (2005).
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).
Google Scholar
Miller, J. B. et al. Airborne measurements indicate large methane emissions from the eastern Amazon basin. Geophys. Res. Lett. 34, L10809 (2007).
Google Scholar
Gatti, L. V. et al. Vertical profiles of CO2 above eastern Amazonia suggest a net carbon flux to the atmosphere and balanced biosphere between 2000 and 2009. Tellus B Chem. Phys. Meteorol. 62, 581–594 (2010).
Google Scholar
D’Amelio, M. T. S., Gatti, L. V., Miller, J. B. & Tans, P. Regional N2O fluxes in Amazonia derived from aircraft vertical profiles. Atmos. Chem. Phys. 9, 8785–8797 (2009).
Google Scholar
Basso, L. S. et al. Seasonality and interannual variability of CH4 fluxes from the eastern Amazon Basin inferred from atmospheric mole fraction profiles. J. Geophys. Res. Atmos. 121, 168–184 (2016).
Google Scholar
Basso, L. S. et al. Amazon methane budget derived from multi-year airborne observations highlights regional variations in emissions. Commun. Earth Environ. 2, 246 (2021).
Google Scholar
Draxler, R. R. & Rolph, G. D. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory). NOAA Air Resources Laboratory (2003).
Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077 (2015).
Google Scholar
Domingues, L. G. et al. A new background method for greenhouse gases flux calculation based in back-trajectories over the Amazon. Atmosphere 11, 734 (2020).
Google Scholar
Lan, X. et al. Atmospheric carbon dioxide dry air mole fractions from the NOAA GML carbon cycle cooperative global air sampling network, 1968–2021. Version: 2022-11-21, https://doi.org/10.15138/wkgj-f215 (2022).
Quadratic mean, \({\bar{x}}_{q}\). in The IUPAC Compendium of Chemical Terminology. https://doi.org/10.1351/goldbook (International Union of Pure and Applied Chemistry, 2014).
Baier, B. C. et al. Multispecies assessment of factors influencing regional CO2 and CH4 enhancements during the winter 2017 ACT‐America campaign. J. Geophys. Res. Atmos. 27, e2019JD031339 (2020).
Jiang, N. & Riley, M. L. Exploring the utility of the random forest method for forecasting ozone pollution in SYDNEY. J. Environ. Protect. Sustain. Develop. 1, 245–254 (2015).
Stekhoven, D. J. & Buhlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Foundation for Statistical Computing, 2020).
Stekhoven, D. J. missForest: nonparametric missing value imputation using random forest. R package version 1.4 (2013).
Cassol, H. L. G. et al. Determination of region of influence obtained by aircraft vertical profiles using the density of trajectories from the HYSPLIT model. Atmosphere 11, 1073 (2020).
Google Scholar
Rolph, G., Stein, A. & Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 95, 210–228 (2017).
Google Scholar
Huffman, G. J. et al. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2, 36–50 (2001).
Google Scholar
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Google Scholar
Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).
Google Scholar
Wiese, D. N., Yuan, D.-N., Boening, C., Landerer, F. W. & Watkins, M. M. JPL GRACE and GRACE-FO Mascon Ocean, Ice, and Hydrology Equivalent Water Height CRI Filtered. Ver. RL06Mv02. https://doi.org/10.5067/TEMSC-3JC62 (2019).
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).
Google Scholar
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L. & Justice, C. O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 217, 72–85 (2018).
Google Scholar
Brennan, J., Gómez-Dans, J. L., Disney, M. & Lewis, P. Theoretical uncertainties for global satellite-derived burned area estimates. Biogeosciences 16, 3147–3164 (2019).
Google Scholar
Vermote, E. F., El Saleous, N. Z. & Justice, C. O. Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens. Environ. 83, 97–111 (2002).
Google Scholar
Justice, C. et al. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 83, 3–15 (2002).
Google Scholar
Friedl, M. A. et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).
Google Scholar
Dalagnol, R., Wagner, F. H., Galvão, L. S., Oliveira, L. E. & Aragao, C. The MANVI product: MODIS (MAIAC) nadir-solar adjusted vegetation indices (EVI and NDVI) for South America. Zenodo https://doi.org/10.5281/zenodo.3159488 (2019).
Almeida, C. T., Oliveira-Júnior, J. F., Delgado, R. C., Cubo, P. & Ramos, M. C. Spatiotemporal rainfall and temperature trends throughout the Brazilian Legal Amazon, 1973–2013. Int. J. Climatol. 37, 2013–2026 (2017).
Google Scholar
Almeida, C. A. et al. Methodology for forest monitoring used in PRODES and DETER projects. INPE, http://urlib.net/rep/8JMKD3MGP3W34R/443H3RE (2021).
Maurano, L. E. P., Escada, M. I. S. & Renno, C. D. Padrões espaciais de desmatamento e a estimativa da exatidão dos mapas do PRODES para Amazônia Legal Brasileira. Ciênc. Florest. 29, 1763–1775 (2019).
Google Scholar
Wooster, M. J. et al. Satellite remote sensing of active fires: history and current status, applications and future requirements. Remote Sens. Environ. 267, 112694 (2021).
Google Scholar
Setzer, A. W., Ferreira, N. J. & Morelli, F. in Queimadas e Incêndios Florestais: Mediante Monitoramento Orbital Ch. 1 (Oficina de Textos, 2021).
Global Observations of Forest Cover and Land-use Dynamics (GOFC-GOLD). https://gofcgold.org/ (accessed 8 July 2022).
Fire Information for Resource Management System (FIRMS). NASA https://www.earthdata.nasa.gov/learn/find-data/near-real-time/firms (accessed 8 July 2022).
Sofan, P., Yulianto, F. & Sakti, A. D. Characteristics of false-positive active fires for biomass burning monitoring in Indonesia from VIIRS data and local geo-features. ISPRS Int. J. Geo-Inf. 11, 601 (2022).
Google Scholar
MMA. Balanço de execução: PPCDAm e PPCerrado 2016–2020. http://combateaodesmatamento.mma.gov.br/images/Doc_ComissaoExecutiva/Balano-PPCDAm-e-PPCerrado_2019_aprovado.pdf (2020).