Strange India All Strange Things About India and world


  • Hoffman, S. L. et al. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Hum. Vaccin. 6, 97–106 (2010).

    Article 
    CAS 

    Google Scholar 

  • Seder, R. A. et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science 341, 1359–1365 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Epstein, J. E. et al. Protection against Plasmodium falciparum malaria by PfSPZ vaccine. JCI Insight 2, e89154 (2017).

    Article 

    Google Scholar 

  • Mordmuller, B. et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature 542, 445–449 (2017).

    Article 
    ADS 

    Google Scholar 

  • Jongo, S. A. et al. Increase of dose associated with decrease in protection against controlled human malaria infection by PfSPZ vaccine in Tanzanian adults. Clin. Infect. Dis. 71, 2849–2857 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mwakingwe-Omari, A. et al. Two chemoattenuated PfSPZ malaria vaccines induce sterile hepatic immunity. Nature 595, 289–294 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sissoko, M. S. et al. Safety and efficacy of a three-dose regimen of Plasmodium falciparum sporozoite vaccine in adults during an intense malaria transmission season in Mali: a randomised, controlled phase 1 trial. Lancet Infect. Dis. 22, 377–389 (2022).

    Article 
    CAS 

    Google Scholar 

  • Trager, W. & Jensen, J. B. Human malaria parasites in continuous culture. Science 193, 673–675 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Haynes, J. D., Diggs, C. L., Hines, F. A. & Desjardins, R. E. Culture of human malaria parasites Plasmodium falciparum. Nature 263, 767–769 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ifediba, T. & Vanderberg, J. P. Complete in vitro maturation of Plasmodium falciparum gametocytes. Nature 294, 364–366 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Campbell, C. C., Collins, W. E., Nguyen Dinh, P., Barber, A. & Broderson, J. R. Plasmodium falciparum gametocytes from culture in vitro develop to sporozoites that are infectious to primates. Science 217, 1048–1050 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Warburg, A. & Schneider, I. In vitro culture of the mosquito stages of Plasmodium falciparum. Exp. Parasitol. 76, 121–126 (1993).

    Article 
    CAS 

    Google Scholar 

  • World Malaria Report 2021 (WHO, 2021).

  • Epstein, J. E. et al. Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity. Science 334, 475–480 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ishizuka, A. S. et al. Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nat. Med. 22, 614–623 (2016).

    Article 
    CAS 

    Google Scholar 

  • Sissoko, M. S. et al. Safety and efficacy of PfSPZ Vaccine against Plasmodium falciparum via direct venous inoculation in healthy malaria-exposed adults in Mali: a randomised, double-blind phase 1 trial. Lancet Infect. Dis. 17, 498–509 (2017).

    Article 
    CAS 

    Google Scholar 

  • Lyke, K. E. et al. Attenuated PfSPZ Vaccine induces strain-transcending T cells and durable protection against heterologous controlled human malaria infection. Proc. Natl Acad. Sci. USA 114, 2711–2716 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Goswami, D. et al. A replication-competent late liver stage–attenuated human malaria parasite. JCI Insight 5, e135589 (2020).

    Article 

    Google Scholar 

  • Warburg, A. & Miller, L. H. Sporogonic development of a malaria parasite in vitro. Science 255, 448–450 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Al-Olayan, E. M., Beetsma, A. L., Butcher, G. A., Sinden, R. E. & Hurd, H. Complete development of mosquito phases of the malaria parasite in vitro. Science 295, 677–679 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Porter-Kelley, J. M. et al. Plasmodium yoelii: axenic development of the parasite mosquito stages. Exp. Parasitol. 112, 99–108 (2006).

    Article 
    CAS 

    Google Scholar 

  • Barr, P. J. et al. Recombinant Pfs25 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in experimental animals. J. Exp. Med. 174, 1203–1208 (1991).

    Article 
    CAS 

    Google Scholar 

  • Posthuma, G. et al. Immunogold localization of circumsporozoite protein of the malaria parasite Plasmodium falciparum during sporogony in Anopheles stephensi midguts. J. Cell Biol. 46, 18–24 (1988).

    CAS 

    Google Scholar 

  • Benton, G., Arnaoutova, I., George, J., Kleinman, H. K. & Koblinski, J. Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv. Drug Deliv. Rev. 79-80, 3–18 (2014).

    Article 
    CAS 

    Google Scholar 

  • Hoffman, S. L. et al. Sporozoite vaccine induces genetically restricted T cell elimination of malaria from hepatocytes. Science 244, 1078–1081 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Doolan, D. L. & Hoffman, S. L. The complexity of protective immunity against liver-stage malaria. J. Immunol. 165, 1453–1462 (2000).

    Article 
    CAS 

    Google Scholar 

  • Hoffman, S. L. & Doolan, D. L. Malaria vaccines-targeting infected hepatocytes. Nat. Med. 6, 1218–1219 (2000).

    Article 
    CAS 

    Google Scholar 

  • Weiss, W. R. & Jiang, C. G. Protective CD8+ T lymphocytes in primates immunized with malaria sporozoites. PLoS ONE 7, e31247 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Camponovo, F. et al. Proteome-wide analysis of a malaria vaccine study reveals personalized humoral immune profiles in Tanzanian adults. eLife 9, e53080 (2020).

    Article 
    CAS 

    Google Scholar 

  • Aly, A. S., Vaughan, A. M. & Kappe, S. H. Malaria parasite development in the mosquito and infection of the mammalian host. Annu. Rev. Microbiol. 63, 195–221 (2009).

    Article 
    CAS 

    Google Scholar 

  • Longley, R. J. et al. Comparative assessment of vaccine vectors encoding ten malaria antigens identifies two protective liver-stage candidates. Sci. Rep. 5, 11820 (2015).

    Article 
    ADS 

    Google Scholar 

  • Atella, G. C., Silva-Neto, M. A., Golodne, D. M., Arefin, S. & Shahabuddin, M. Anopheles gambiae lipophorin: characterization and role in lipid transport to developing oocyte. Insect Biochem. Mol. Biol. 36, 375–386 (2006).

    Article 
    CAS 

    Google Scholar 

  • Costa, G. et al. Non-competitive resource exploitation within mosquito shapes within-host malaria infectivity and virulence. Nat. Commun. 9, 3474 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gare, D. C., Piertney, S. B. & Billingsley, P. F. Anopheles gambiae collagen IV genes: cloning, phylogeny and midgut expression associated with blood feeding and Plasmodium infection. Int. J. Parasitol. 33, 681–690 (2003).

    Article 
    CAS 

    Google Scholar 

  • Nacer, A., Walker, K. & Hurd, H. Localisation of laminin within Plasmodium berghei oocysts and the midgut epithelial cells of Anopheles stephensi. Parasit. Vectors 1, 33 (2008).

    Article 

    Google Scholar 

  • Ponnudurai, T., Meuwissen, J. H., Leeuwenberg, A. D., Verhave, J. P. & Lensen, A. H. The production of mature gametocytes of Plasmodium falciparum in continuous cultures of different isolates infective to mosquitoes. Trans. R. Soc. Trop. Med. Hyg. 76, 242–250 (1982).

    Article 
    CAS 

    Google Scholar 

  • Li, T. et al. Robust, reproducible, industrialized, standard membrane feeding assay for assessing the transmission blocking activity of vaccines and drugs against Plasmodium falciparum. Malar. J. 14, 150 (2015).

    Article 

    Google Scholar 

  • Feldmann, A. M. & Ponnudurai, T. Selection of Anopheles stephensi for refractoriness and susceptibility to Plasmodium falciparum. Med. Vet. Entomol. 3, 41–52 (1989).

    Article 
    CAS 

    Google Scholar 

  • Bounkeua, V., Li, F. & Vinetz, J. M. In vitro generation of Plasmodium falciparum ookinetes. Am. J. Trop. Med. Hyg. 83, 1187–1194 (2010).

    Article 

    Google Scholar 

  • FiberCell Systems Hollow Fiber Cell Culture: An Overview (FibreCellSystems); https://www.fibercellsystems.com/instructional-video-fibercell-systems-hollow-fiber-cell-culture-an-overview/ (2012).

  • Operation of a FiberCell Systems Duet Pump (FibreCellSystems); https://www.fibercellsystems.com/instructional-video-operation-of-a-fibercell-systems-duet-pump/ (2013).

  • Zavala, F., Gwadz, R. W., Collins, F. H., Nussenzweig, R. S. & Nussenzweig, V. Monoclonal antibodies to circumsporozoite proteins identify the species of malaria parasites in infected mosquitoes. Nature 299, 737–738 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Roestenberg, M. et al. Controlled human malaria infections by intradermal injection of cryopreserved Plasmodium falciparum sporozoites. Am. J. Trop. Med. Hyg. 88, 5–13 (2013).

    Article 
    CAS 

    Google Scholar 

  • Sattabongkot, J. et al. Establishment of a human hepatocyte line that supports in vitro development of the exo-erythrocytic stages of the malaria parasites Plasmodium falciparum and P. vivax. Am. J. Trop. Med. Hyg. 74, 708–715 (2006).

    Article 
    CAS 

    Google Scholar 

  • Holder, A. A. The carboxy-terminus of merozoite surface protein 1: structure, specific antibodies and immunity to malaria. Parasitology 136, 1445–1456 (2009).

    Article 
    CAS 

    Google Scholar 

  • Tsuji, M., Mattei, D., Nussenzweig, R. S., Eichinger, D. & Zavala, F. Demonstration of heat-shock protein 70 in the sporozoite stage of malaria parasites. Parasitol. Res. 80, 16–21 (1994).

    Article 
    CAS 

    Google Scholar 

  • Sanchez, G. I., Rogers, W. O., Mellouk, S. & Hoffman, S. L. Plasmodium falciparum: exported protein-1, a blood stage antigen, is expressed in liver stage parasites. Exp. Parasitol. 79, 59–62 (1994).

    Article 
    CAS 

    Google Scholar 

  • Guerin-Marchand, C. et al. A liver-stage-specific antigen of Plasmodium falciparum characterized by gene cloning. Nature 329, 164–167 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Vaughan, A. M. et al. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. J. Clin. Invest. 122, 3618–3628 (2012).

    Article 
    CAS 

    Google Scholar 

  • Kefi, M. et al. New rapid one-step PCR diagnostic assay for Plasmodium falciparum infective mosquitoes. Sci. Rep. 8, 1462 (2018).

    Article 
    ADS 

    Google Scholar 

  • Mensah, V. A. et al. Safety, immunogenicity and efficacy of prime-boost vaccination with ChAd63 and MVA encoding ME-TRAP against Plasmodium falciparum infection in adults in Senegal. PLoS ONE 11, e0167951 (2016).

    Article 

    Google Scholar 

  • Zanghì, G. et al. A specific PfEMP1 is expressed in P. falciparum sporozoites and plays a role in hepatocyte infection. Cell Rep. 22, 2951–2963 (2018).

    Article 

    Google Scholar 

  • Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Celniker, S. E. et al. Finishing a whole-genome shotgun: release 3 of the Drosophila melanogaster euchromatic genome sequence. Genome Biol. 3, research0079.1 (2002).

    Article 

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article 
    CAS 

    Google Scholar 

  • Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 5, 621–628 (2008).

    Article 
    CAS 

    Google Scholar 

  • Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281–285 (2012).

    Article 
    CAS 

    Google Scholar 

  • Breitling, R., Armengaud, P., Amtmann, A. & Herzyk, P. Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett. 573, 83–92 (2004).

    Article 
    CAS 

    Google Scholar 

  • Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Robinson, M. D. & Smyth, G. K. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9, 321–332 (2008).

    Article 
    MATH 

    Google Scholar 

  • Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article 
    CAS 

    Google Scholar 

  • Diehl, K. H. et al. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J. Appl. Toxicol. 21, 15–23 (2001).

    Article 
    CAS 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published. Required fields are marked *