Strange India All Strange Things About India and world


  • Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223–231 (1957).

    MathSciNet 
    Article 

    Google Scholar 

  • Sharvin, Y. V. A. Possible method for studying Fermi surfaces. Sov. Phys. JETP 21, 655 (1965).

    ADS 

    Google Scholar 

  • de Jong, M. J. M. & Molenkamp, L. W. Hydrodynamic electron flow in high-mobility wires. Phys. Rev. B 51, 389–402 (1995).

    Google Scholar 

  • Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Crossno, J. et al. Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene. Science 351, 1058–1061 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Moll, P. J. W., Kushwaha, P., Nandi, N., Schmidt, B. & Mackenzie, A. P. Evidence for hydrodynamic electron flow in PdCoO2. Science 351, 1061–1064 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Krishna Kumar, R. et al. Superballistic flow of viscous electron fluid through graphene constrictions. Nat. Phys. 13, 1182–1185 (2017).

    CAS 
    Article 

    Google Scholar 

  • Gooth, J. et al. Thermal and electrical signatures of a hydrodynamic electron fluid in tungsten diphosphide. Nat. Commun. 9, 4093 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Braem, B. A. et al. Scanning gate microscopy in a viscous electron fluid. Phys. Rev. B 98, 241304 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Berdyugin, A. I. et al. Measuring Hall viscosity of graphene’s electron fluid. Science 364, 162–165 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Tan, C. et al. Realization of a universal hydrodynamic semiconductor in ultra-clean dual-gated bilayer graphene. Sci Adv. 8, eabi8481 (2022).

  • Sulpizio, J. A. et al. Visualizing Poiseuille flow of hydrodynamic electrons. Nature 576, 75–79 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ku, M. J. H. et al. Imaging viscous flow of the Dirac fluid in graphene. Nature 583, 537–541 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jenkins, A. et al. Imaging the breakdown of ohmic transport in graphene. Preprint at https://arxiv.org/abs/2002.05065 (2020).

  • Keser, A. C. et al. Geometric control of universal hydrodynamic flow in a two-dimensional electron fluid. Phys. Rev. X 11, 031030 (2021).

    CAS 

    Google Scholar 

  • Gupta, A. et al. Hydrodynamic and ballistic transport over large length scales in GaAs/AlGaAs. Phys. Rev. Lett. 126, 076803 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Krebs, Z. J. et al. Imaging the breaking of electrostatic dams in graphene for ballistic and viscous fluids. Preprint at https://arxiv.org/abs/2106.07212 (2021).

  • Vool, U. et al. Imaging phonon-mediated hydrodynamic flow in WTe2. Nat. Phys. https://doi.org/10.1038/s41567-021-01341-w (2021).

  • Shavit, M., Shytov, A. & Falkovich, G. Freely flowing currents and electric field expulsion in viscous electronics. Phys. Rev. Lett. 123, 026801 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Stern, A. et al. Spread and erase – how electron hydrodynamics can eliminate the Landauer-Sharvin resistance. Preprint at https://arxiv.org/abs/2110.15369?context=cond-mat.str-el (2021).

  • Gurzhi, R. N. Minimum of resistance in impurity free conductors. Sov. Phys. JETP 17, 521 (1963).

    Google Scholar 

  • Nagaev, K. E. & Ayvazyan, O. S. Effects of electron-electron scattering in wide ballistic microcontacts. Phys. Rev. Lett. 101, 1–4 (2008).

    Article 

    Google Scholar 

  • Nagaev, K. E. & Kostyuchenko, T. V. Electron-electron scattering and magnetoresistance of ballistic microcontacts. Phys. Rev. B 81, 1–9 (2010).

    Article 

    Google Scholar 

  • Andreev, A. V., Kivelson, S. A. & Spivak, B. Hydrodynamic description of transport in strongly correlated electron systems. Phys. Rev. Lett. 106, 256804 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Torre, I., Tomadin, A., Geim, A. K. & Polini, M. Nonlocal transport and the hydrodynamic shear viscosity in graphene. Phys. Rev. B 92, 165433 (2015).

    ADS 
    Article 

    Google Scholar 

  • Levitov, L. & Falkovich, G. Electron viscosity, current vortices and negative nonlocal resistance in graphene. Nat. Phys. 12, 672–676 (2016).

    CAS 
    Article 

    Google Scholar 

  • Scaffidi, T., Nandi, N., Schmidt, B., Mackenzie, A. P. & Moore, J. E. Hydrodynamic electron flow and Hall viscosity. Phys. Rev. Lett. 118, 226601 (2017).

    ADS 
    Article 

    Google Scholar 

  • Guo, H., Ilseven, E., Falkovich, G. & Levitov, L. S. Higher-than-ballistic conduction of viscous electron flows. Proc. Natl Acad. Sci. USA 114, 3068–3073 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Narozhny, B. N., Gornyi, I. V., Mirlin, A. D. & Schmalian, J. Hydrodynamic approach to electronic transport in graphene. Ann. Phys. 529, 1700043 (2017).

    Article 

    Google Scholar 

  • Holder, T. et al. Ballistic and hydrodynamic magnetotransport in narrow channels. Phys. Rev. B 10, 245305 (2019).

    ADS 
    Article 

    Google Scholar 

  • Levchenko, A. & Schmalian, J. Transport properties of strongly coupled electron–phonon liquids. Ann. Phys. 419, 168218 (2020).

    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • Hong, Q., Davydova, M., Ledwith, P. J. & Levitov, L. Superscreening by a retroreflected hole backflow in tomographic electron fluids. Preprint at https://arxiv.org/abs/2012.03840 (2020).

  • Honig, M. et al. Local electrostatic imaging of striped domain order in LaAlO3/SrTiO3. Nat. Mater. 12, 1112–1118 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ella, L. et al. Simultaneous voltage and current density imaging of flowing electrons in two dimensions. Nat. Nanotechnol. 14, 480–487 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ben Shalom, M. et al. Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nat. Phys. 12, 318–322 (2016).

    Article 

    Google Scholar 

  • Efetov, D. K. & Kim, P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010).

    ADS 
    Article 

    Google Scholar 

  • Waissman, J. et al. Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes. Nat. Nanotechnol. 8, 569–574 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 



  • Source link

    By AUTHOR

    Leave a Reply

    Your email address will not be published.